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1 Introduction

Uncertainty over government policy affects important and irreversible decisions, such as firm

technology adoption, entry, and exit. In many settings, the process of forming and imple-

menting policies creates uncertainty. For instance, in the U.S., the government frequently

enacts new policies by passing legislation that empowers agencies to develop specific regula-

tions. This approach may lead to more responsive policies by allowing existing legislation to

respond to new circumstances and technologies. However, developing regulations takes time

and they may be subject to court challenges and executive leadership changes that generate

policy uncertainty.

The well-developed real options literature has investigated the impact of uncertainty as

characterized by outcome variance, finding that increasing outcome variance may lead to

delayed irreversible decisions and higher costs (Teisberg, 1993; Dixit and Pindyck, 1994).

However, in policy settings, uncertainty is often characterized by whether the policy will be

enforced, rather than by outcome variance alone. In this case, the effect of earlier uncertainty

resolution on irreversible decisions such as investment is less clear. For instance, consider a

firm that must make a drilling investment at a given point in time and faces a 50% chance

of an environmental policy that would move oil prices from $50 to $70 per barrel if adopted

(Kellogg, 2014; Herrnstadt et al., 2020). If the uncertainty surrounding the policy is resolved

before the drilling decision point rather than after, the probability of drilling could either de-

crease or increase: if drilling costs $55 per barrel, early uncertainty resolution would decrease

the expected probability of drilling from 100 to 50%,1 while if it is $65, it would increase the

expected probability from 0 to 50%. While the direction of the change in investment varies,

resolving uncertainty early here always attenuates extreme outcomes in expectation.

This paper considers a major pollution regulation in the electricity sector where enforce-

ment was uncertain: the Mercury and Air Toxics Standard (MATS). MATS required that

electricity generators adopt substantial pollution abatement equipment in order to remain

in the market. We estimate agents’ beliefs regarding the likelihood of MATS enforcement

by modeling generators’ technology adoption and exit decisions within a dynamic oligopoly

1With uncertainty resolved after the drilling decision point, drilling will occur because costs are less than
the expected oil price of $60/barrel.
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framework. We then use our estimates to simulate how the timing of uncertainty resolution

affects counterfactual outcomes in the industry, including generator exit, equilibrium costs,

and pollution. Because firms in many sectors—including healthcare, telecommunications,

and finance—are oligopolists making irreversible decisions in the face of similarly uncertain

policies, our methods and approaches may be more broadly applicable.

Coal-fired electricity generating units (which we refer to as generators) are the primary

emitters of air toxics from electricity production. These pollutants, which include mercury,

benzene, and arsenic, cause cancer, birth defects, and other serious illnesses. Despite their

dangers, federal regulation of air toxics has come relatively recently and been highly uncer-

tain: the Environmental Protection Agency (EPA) did not release the final MATS rule until

2012 with a scheduled enforcement date in 2016. In the MATS regulatory impact analysis,

the EPA calculated that compliance via technology adoption would cost generators $9.6 bil-

lion but provide substantial pollution reduction benefits (Environmental Protection Agency,

2011). Partially because of these costs, MATS has been subject to extensive judicial and ad-

ministrative review—including by the U.S. Supreme Court—but ultimately survived. Given

the large pollution externalities of coal generation, policy uncertainty surrounding MATS

potentially has important financial and environmental ramifications.

To answer our research questions, we estimate a dynamic oligopoly model of coal gen-

erator actions and beliefs over the period 2006-17 and then perform policy counterfactuals

on our estimated model. We focus on merchant generators—or independent power produc-

ers (IPP)—because they face market incentives rather than rate-of-return regulation. In

our model, each year, generators are characterized by a capacity, heat rate (i.e., fuel ineffi-

ciency), location, and whether they have adopted abatement technology. Those generators

potentially subject to MATS form an expectation about the probability of 2016 enforcement.

They then simultaneously decide whether to adopt abatement technology (if they have not

already adopted), exit, or continue operating without adopting. Following this choice, gen-

erators earn profits by supplying electricity to hourly markets within the year. Profits are

equal to revenues from electricity sales minus the costs of fuel, ramping (increasing their

generation level), and operations & maintenance (O&M).

Equilibrium effects are potentially important in our context. For instance, one generator’s
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exit will increase rivals’ profits and decrease their likelihoods of exit. Further, a generator

may adopt abatement technology partially to signal a commitment to rivals to remaining

in the market (Riordan, 1992; Schmidt-Dengler, 2006). Yet the potentially large number of

generators in each market results in a curse of dimensionality that makes estimation and the

computation of equilibria difficult.

We therefore develop an equilibrium concept called Approximate Belief Oligopoly Equilib-

rium (ABOE). In an ABOE, all agents are oligopolists that compete in a Markov equilibrium

and recognize that their actions affect market states. However, rather than keeping track of

each competitor’s status, agents keep track of aggregate state information. Each generator’s

beliefs about how these states evolve—conditional on its own actions—are consistent with

competitors’ equilibrium actions as approximated by conditional moments, in our case AR(1)

processes. Thus, in our setting, generators use approximately correct beliefs to make tech-

nology adoption and exit decisions. ABOE builds on approximate equilibrium techniques

such as moment-based Markov equilibrium (MME, Ifrach and Weintraub, 2017) by treating

all agents as oligopolists.2

In our application, the aggregate states are the market coal capacity, abatement technol-

ogy adoption share, and natural gas to coal fuel price ratio. The first two aggregate states

capture information about expected future profits that occurs in the oligopoly context. They

also model generators’ potential preemption strategies—of adopting abatement technology

and not exiting—for which it is crucial that they understand that their actions affect the

market state evolution, as modeled by the ABOE. Finally, the fuel price ratio is a major

determinant of the expected costs and revenues from electricity sales. We model generators’

beliefs about these three states as AR(1) processes conditional on the generator’s own ac-

tions that approximate the aggregate outcomes of rivals’ unobservable cost shocks. Beyond

aggregating information into a market state, a limitation of our specification is that we do

not model ownership linkages across generators.

In general, it might be difficult to separately identify our key parameters—the perceived

probabilities of future MATS enforcement—from the exit scrap value, since increases in either

2ABOE also relates to the game theoretic literature that discusses equilibrium convergence when agents
have approximately correct beliefs (Esponda and Pouzo, 2016; Bohren and Hauser, 2021).
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would encourage generators to exit. However, while the federal government was formulating

air toxics policies, some U.S. states mandated air toxics reductions for generators within

their borders. These standards were either legislative or developed with input from local

power producers, and hence were largely not subject to the same level of uncertainty. Our

estimator therefore compares exit rates between generators subject to these standards and

those subject to MATS—after controlling for other differences—to identify the perceived

enforcement probabilities.

Relationship to the Literature: This paper builds on three main literatures. First, we

extend a recent literature that measures economic and policy uncertainty and evaluates the

impact of this uncertainty on economic outcomes. Baker et al. (2016), Handley and Li (2020),

and Langer and Lemoine (2020) develop measures of uncertainty using newspaper text, SEC

filing text, and options prices, respectively. Among other papers, Handley and Limão (2017),

Dorsey (2019), and Johnston and Parker (2022) examine the impact of uncertainty on trade

flows, energy industry investment, and home prices, respectively. We add to this literature

by recovering generators’ beliefs over enforcement probabilities and using the estimates to

perform counterfactual simulations on the timing of uncertainty resolution.

Second, we contribute to a literature that estimates structural models of electricity mar-

kets, e.g. Fowlie (2010), Abito et al. (2022), Linn and McCormack (2019), Scott (2021), and

Elliott (2022). Our paper develops a dynamic oligopoly model of the electricity industry

that incorporates policy uncertainty. It also relates closely to two papers by an overlapping

set of co-authors. First, we use the approach to estimating ramping and O&M costs from

Borrero et al. (2023) to calculate annual generator profits. Second, like Gowrisankaran et al.

(2023) we model how policies affect dynamic decisions in the electricity industry. However,

Gowrisankaran et al. consider the role of U.S. state rate-of-return regulation in energy tran-

sitions, while this paper focuses on policy uncertainty faced by generators subject to market

incentives.

Finally, we advance the literature on dynamic oligopoly models with approximately cor-

rect beliefs. In this literature, MME (Ifrach and Weintraub, 2017) builds on Oblivious Equi-

librium (Weintraub et al., 2008), by allowing for aggregate shocks and equilibrium computa-

tion when an industry is not in a steady state. ABOE builds on MME by allowing all actors
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to understand that they affect the aggregate market states, whereas in MME, the researcher

classifies each actor as either fringe or dominant. Recent empirical MME applications include

Gerarden (2022), Vreugdenhil (2020), Corbae and D’Erasmo (2021), and Jeon (2022).

Summary of findings: We estimate that generators’ perception of the probability of

MATS enforcement started at 100% in 2012, dropped to as low as 43.0% in 2014, and then rose

to 99.9% in 2015, for an average probability of enforcement of 78.27%. Further, we estimate

that exit and technology adoption are both costly, with an exit costing the generator $196

million, technology adoption to comply with U.S. state standards costing $151 million, and

technology adoption to comply with MATS costing $550 million. Our model predicts that

generators subject to MATS would spend $7.3 billion on technology adoption and $19.24

billion on total exit costs, discounted to 2012.

Our counterfactual analyses investigate the impact of resolving policy uncertainty earlier

and reducing generator exit costs. We calculate the effect of reducing policy uncertainty by

investigating the differences in equilibrium outcomes under a setting where policy implemen-

tation is decided in 2016 versus one where there is a commitment in 2012 to whether the

standard will be enforced in 2016, both with the mean generator perceived probability of

enforcement. Resolving uncertainty immediately would increase expected generator profits

by $930 million in present discounted value. Nevertheless, eliminating uncertainty also in-

creases expected pollution by about 65 million pounds of SO2 over 30 years, valued between

$809 million and $2.206 billion dollars, in part by decreasing generator exit.

As in the oil drilling example above, ex ante uncertainty resolution in our model attenu-

ates extreme outcomes in expectation because it takes the mean of generator decisions over

multiple policy environments. We find that early policy uncertainty resolution leads to less

exit and more pollution, implying that many coal generators were close to the exit margin.

Removing exit costs—for instance by having the government pay for site remediation—

reduces the number of generators in 2016 by 15.1% and increases generator profits by 49.6%.

Thus subsidizing exit costs increases exit, but requires substantial government transfers to

coal generators.

The remainder of this paper is organized as follows. Section 2 discusses the institutional

framework, data, and construction of key variables. Section 3 specifies our structural model
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of technology adoption and exit. Section 4 explains our approach to estimation and identifi-

cation. Section 5 presents our results and counterfactuals. Finally, Section 6 concludes.

2 Institutional Framework and Data

2.1 Background on Regulation of Air Toxics

The EPA regulates 187 air toxics, which are also called hazardous air pollutants,3 under the

1990 Clean Air Act Amendments (CAAA). The EPA’s first attempt to regulate generators’

mercury emissions was the Clean Air Mercury Rule (CAMR), which was finalized in 2005.

The courts vacated CAMR in 2008 under New Jersey v. EPA,4 which found that the EPA

should have regulated mercury under a maximum achievable control technology (MACT)

standard, instead of CAMR which was a voluntary cap-and-trade regulation (Hudson, 2010).

Although the rule was vacated, our data show that some generators did install mercury

abatement technologies during the CAMR period.

At approximately the same time that New Jersey v. EPA vacated CAMR, the courts

found in Sierra Club v. EPA that the EPA would have to regulate mercury and other air

toxics together, rather than starting with mercury alone.5 In response to these decisions, the

EPA finalized MATS in 2012, after releasing earlier versions of the proposed rule in 2011.

The final MATS rule required generators to comply with MATS by 2015, but extensions to

2016 were built into the rule and were widely granted.

The investments necessary to achieve compliance with MATS are irreversible and costly,

implying that generators may not want to adopt these technologies unless they are fairly cer-

tain that compliance will be required. MATS compliance technologies convert pollutants into

water-soluble forms, bind them to larger particles, and precipitate the new compounds with

a particulate matter catcher.6 This basic process can be achieved with different technologies,

making it difficult to determine compliance from technology adoption data alone.

3https://www.epa.gov/haps/what-are-hazardous-air-pollutants.
4517 F.3d 574 (D.C. Cir. 2008).
5551 F. 3d 1019 (D.C. Cir. 2008), also known as the “Brick MACT” decision.
6Compliance may also potentially be achievable by fuel switching to cleaner coal.
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EPA regulations have been vulnerable to two key sources of uncertainty. First, as with

CAMR, EPA rule-making has been subject to substantial legal challenge, up to and including

Supreme Court review. Further, changes in executive leadership have drastically altered the

EPA’s focus. These leadership changes interact with legal challenges, e.g., a new administra-

tion may change legal approaches.

In the context of MATS, uncertainty arose from both of these sources. The final rule was

challenged by several U.S. states’ attorneys general. The result of these challenges was that, in

2015, the Supreme Court remanded MATS to the EPA for additional justification that MATS

was “appropriate and necessary.” However, the order left MATS in place, which effectively

meant that generators needed to comply by the 2016 deadline. In 2017, the incoming Trump

administration did not file the justification but left MATS in place nonetheless.7

U.S. states started to develop their own mercury abatement policies during the CAMR

period. An early report by the Congressional Research Service lists U.S. states with their

own policies, along with preliminary announcement and enforcement dates (Congressional

Research Service, 2007). CAMR encouraged the development of these policies, which varied

substantially across U.S. states. In some cases—e.g., Florida—these policies were cap-and-

trade systems broadly similar to CAMR while in other cases—e.g., New Hampshire—they

were effectively voluntary. We are aware of only one U.S. state where the state policy faced

a substantial court challenge: Pennsylvania legislators opposed the regulation put forward

by the state agency and ultimately the state court overturned it.

We define our sample of U.S. states with state air toxics standards as those with announced

rules or enacted legislation with enforcement dates prior to 2016, excluding Pennsylvania.

Starting with the Congressional Research Service report, we use a combination of newspaper

articles, state environmental agency press releases, and state statutes to verify and update

our list of U.S. states with standards and their announcement and enforcement years. On-line

Appendix A1 provides details of U.S. state standards, and Table A1 in On-line Appendix A4

lists announcement and enforcement years for these standards.

In contrast to federal regulations, these U.S. state standards were generally subject to

very little uncertainty for at least two reasons. First, in some states (e.g. CT and MD), these

7In 2021, the Biden Administration did file the justification of MATS.
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standards were passed into law by state legislatures (Halloran, 2003; Pelton, 2006). Second,

even in states such as IL and MA where the standards were created as rules issued by the state

environmental agency, they were generally developed in tandem with the owners of large coal

generators (Hawthorne and Tribune staff reporter, 2006; United Press International, 2004),

which led to substantially fewer and weaker judicial challenges. For this reason, we can use

the decisions of generators subject to U.S. state enforcement to identify the costs of generator

exit and compliance in the absence of policy uncertainty.

One complication is that U.S. state air toxics regulations were weaker than MATS in

some cases, for at least three reasons. First, the specified standards for mercury levels were

sometimes higher than under MATS. Second, the state standards covered mercury rather

than all air toxics. Finally, enforcement in some cases consisted of the regulator approving

generators’ abatement technology adoption plans rather than monitoring ex post outcomes,

as occurs under MATS. These factors motivate our modeling assumption that compliance

costs vary across the two sets of U.S. states.

Supporting our assumptions on the timing, salience, and importance of MATS to genera-

tors not subject to U.S. state standards, many of these generators responded immediately to

the 2012 MATS announcement by reporting to the Energy Information Administration (EIA)

that they planned to retire. Specifically, at the beginning of 2012, 8.6% of generators subject

to MATS newly reported that they would retire between 2012 and 2015. The analogous 2012

increase for generators subject to U.S. state standards was only 1.4%.8

Finally, emissions from coal generators were also subject to other pollution regulations

during our analysis period. The most important of these is the Cross-State Air Pollution

Rule (CSAPR), which regulated SO2 and NOX emissions from generators in certain eastern

states. Unlike for MATS, generators could comply with CSAPR by purchasing emissions

permits. The market price of these permits has generally been quite low, so we do not model

the costs of CSAPR compliance.

8Calculations from EIA form 860 based on coal generators in Eastern Interconnection.
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2.2 Data Sources

While our primary analysis data set is at the generator-year level, we calculate annual gen-

erator profits using data at the generator-hour level. Fossil fuel power plants are generally

made up of a collection of generators that may have different costs, capacities, and abate-

ment technologies. Because of the differences across generators within a plant, we focus on

decisions at the generator, and not plant, level.9 Our data sources include information on

generators’ production, costs, emissions, market conditions, demand, prices, and abatement

technology adoption.

Our primary data source is the EPA’s Continuous Emissions Monitoring System (CEMS)

database. These data are at the generator-hour level. Our sample covers 2006 to 2017 for

U.S. states in the Eastern Interconnection, which includes the vast majority of IPP coal

generators in the U.S.10 Each observation in the CEMS data provides the heat input of the

fuel used (in MMBtu), electricity production (in MWh), and CO2, NOX, and SO2 emissions

(in pounds/MMBtu) for each generator that the EPA monitors with a CEMS. The CEMS

data further report a facility identifier and the location of each generator. As discussed in

On-line Appendix A2, we use SO2 as a proxy to measure the adoption of air toxics abatement

technology and to measure annual generator emissions.

We merge the hourly CEMS data with several other data sources. First, the EPA provides

an annual-level data set that includes generator characteristics. We define a generator as

using coal if the primary fuel variable includes the word “COAL.” Our definition therefore

includes generators that primarily use coal, but also use other fuels.

Second, we merge in annual data from the EIA Form 923 on whether the facility is

an independent power producer (IPP) or not. We consider only IPP generators because

other generators, which are owned by load-serving entities, may face non-market incentives

(Gowrisankaran et al., 2023). We define a coal generator to be an IPP if the facility at which

it is located is an IPP at any point in our sample.

Third, we create a data set of annual, U.S. state-level natural gas and coal prices from

9We define generators using the EPA’s definition of units, which is based on emissions release points. This
corresponds roughly, but not exactly, to the Energy Information Administration’s definition of “boilers,”
which is based on fuel combustion.

10We drop coal generators in Oklahoma, since they all appear to enter after MATS was announced.
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EIA Form 423. This form reports fuel prices by generator and year. We aggregate fuel

prices to the U.S. state-year level by taking the mean weighted by annual generation at each

generator. We use price data at the U.S. state-year level because it measures the opportunity

cost of fuel faced by generators.

Fourth, we merge in hourly wholesale electricity prices by U.S. state. We obtain prices for

nodes in each Regional Transmission Organization (RTO) or Independent System Operator

(ISO) in the Eastern Interconnection.11 For some U.S. states, the data report prices for

multiple nodes. For these states we take the mean over the nodes for each hour. For other

states, e.g. Georgia, there is no reported electricity price. In these cases, we assign the price

from the node that is geographically closest to the state.

Fifth, we deflate these prices to January, 2006 dollars. To do this, we use the Bureau of

Labor Statistics’ chain-weighted consumer price index for urban consumers.

Sixth, we recover hourly U.S. state-level electricity load from the Public Utility Data

Liberation (PUDL) database, which derives its data from the Federal Energy Regulatory

Commission (FERC) Form 714. PUDL reports multiple measures of load. In particular, we

use the reported load scaled to match the total annual load at the state level in EIA Form

861.

Finally, we use county-level weather data from PRISM. We aggregate these data to the

U.S. state level by calculating the population-weighted mean of the daily minimum and

maximum temperatures, using annual population data from the U.S. Census. Following

Schlenker and Taylor (2021), we recover daily heating degrees, which measure the amount

by which population-weighted state average daily temperature exceeds 65 degrees (if at all),

and analogously cooling degrees.

We use these data to construct a number of key variables at the generator level, specifically

the year of abatement technology adoption and exit, minimum and maximum generating

capacity, and heat rate. On-line Appendix A2 presents details.
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Table 1: Generator Descriptive Statistics by Regulatory Regime

U.S. State Standard MATS

Capacity (MW) 279.69 (213.78) 245.74 (282.60)
Heat Rate (MMBtu/MWh) 10.51 (2.25) 11.90 (4.64)
Coal Fuel Price ($/MMBtu) 1.70 (0.19) 2.13 (0.40)
Marginal Fuel Costs ($/MWh) 17.85 (4.44) 26.23 (13.94)

Generators 93 226
Generator-years 841 2040

Note: Authors’ calculations based on annual analysis sample of IPP coal
generators. Standard deviations are in parentheses.

2.3 Descriptive Statistics

Table 1 presents generator-level descriptive statistics on our analysis data separately for

generators subject to U.S. state air toxics standard enforcement and MATS. Our analysis

data contain 319 IPP coal generators, of which 93 are subject to U.S. state enforcement

and 226 are subject to MATS. They include a total of 2,881 generator-year observations.

These statistics suggest that it is reasonable to assume that generators are technologically

similar across the two sets of U.S. states. Specifically, generator mean capacity levels and

heat rates are similar across the two sets of U.S. states, though there is substantial variation

in these characteristics within each set of U.S. states. Generators in U.S. states with air

toxics standards do face lower average coal fuel prices than generators subject to MATS

($1.70 vs $2.13 per MMBtu), which then feeds into lower marginal fuel costs ($17.85/MWh

vs $26.23/MWh).

While generators’ underlying characteristics are fairly similar across enforcement regimes,

their technology adoption and exit decisions are quite different. Table 2 reports the number

of generators that adopt air toxics abatement technology or exit the market by years to en-

forcement. These data show that generators subject to state standards were much more likely

to adopt pollution abatement technology than exit, while the reverse is true for generators

subject to MATS. Although this could reflect MATS being stricter than U.S. state standards,

it could also be explained by differences in underlying market conditions. Specifically, natural

11Specifically, we retrieve electricity prices from the New England ISO, New York ISO, PJM, Midcontinent
ISO, and the Southern Power Pool.

11



Table 2: Counts of Generators Adopting Abatement Technology or Exiting

State Standard MATS
Years to Adoptions Exits Share Adoptions Exits Share
Enforcement Complied Complied

4 12 0 0.34 2 23 0.30
3 5 1 0.51 1 19 0.54
2 9 0 0.77 2 7 0.64
1 4 4 1.00 9 21 1.00

Total 30 11 14 84

Note: Authors’ calculations based on annual analysis sample of IPP coal generators.

gas prices were substantially lower during the MATS enforcement period than earlier.

Figure 1: Share of Generators in Compliance Relative to Base Year, Among Adopters

0
.2

.4
.6

.8
1

Sh
ar

e 
of

 G
en

er
at

or
s 

in
 C

om
pl

ia
nc

e
R

el
at

iv
e 

to
 B

as
e 

Ye
ar

, A
m

on
g 

A
do

pt
er

s

-5 -4 -3 -2 -1
Years to Air Toxics Standard Enforcement

Generators Under State Standards Generators Under MATS

Note: Share of generators that have adopted air toxics abatement technology among generators subject to
U.S. state air toxics standards, relative to the total number of generators that had not adopted abatement
technology five years before air toxics standard enforcement. Calculations based on annual analysis sample.

12



These differences in market conditions at the time of air toxic standard implementation

make a simple comparison in outcomes between the two sets of U.S. states difficult. Nonethe-

less, Figure 1 provides some intuition behind the identification of the perceived probabilities

of MATS enforcement over time by comparing generators that adopted abatement technol-

ogy within four years of enforcement across the two sets. The dashed line shows the share

of generators subject to U.S. state standards that had adopted, and the solid line shows this

share for generators subject to MATS, both by years to enforcement. Four years prior to en-

forcement, adoption rates are fairly similar, but at three and two years prior to enforcement,

generators subject to MATS had adopted abatement technologies at substantially lower rates

than generators subject to state standards, suggesting that, in those years, generators may

have believed the probability of 2016 MATS enforcement to be substantially below one.

Table 3: Descriptive Statistics of Hourly Generation

Share of Hours at Maximum Generation 0.44 (0.50)
Share of Hours at Minimum Generation 0.25 (0.43)
Share of Hours at Zero Generation 0.31 (0.46)
Generation (MWh) 174.14 (248.30)
Electricity Price ($/MWh) 39.14 (25.20)
U.S. State Electricity Demand (GWh) 13.32 (5.35)
Daily Heating Degrees 13.90 (14.88)
Daily Cooling Degrees 2.83 (4.82)

N 26,014,143

Note: Authors’ calculations based on hourly generation data of IPP coal
generators. Standard deviations are in parentheses.

Finally, Table 3 presents descriptive statistics on the hourly generation data we use to

calculate annual generator profits. Over our sample period, IPP coal generators operated

at maximum generation for 44% of hours, minimum generation for 25% of hours, and were

off for 31% of hours, for a mean hourly generation level of 174.14 MWh. Generators in our

sample faced wholesale electricity market prices with a mean of $39.14/MWh. Mean hourly

U.S. state electricity demand was 13.32 GWh, which was driven by a mean of 13.90 heating

degree days and 2.83 cooling degree days. All of these variables have substantial variation

both over time and across generators.
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3 Model

We develop an infinite-horizon dynamic equilibrium model of abatement technology adoption

and exit for coal independent power producers (IPPs), which we refer to as “generators” for

brevity. Each year, t, there is a set of generators that are currently operating. Each generator,

j = 1, . . . , Jt, has a time-invariant heat rate, heatj, and capacity, Kj, and an indicator for

whether it has active air toxics abatement technology, Techjt. We assume that each U.S.

state forms one electricity market. For brevity, our notation considers one market and hence

does not include a market index.

We model generators as competing annually in a dynamic oligopoly through their tech-

nology adoption and exit decisions. They also compete with natural gas, renewable, utility-

owned coal, and other sources. We do not directly model other sources’ entry, exit, technology

adoption, and production decisions, but treat them as exogenous, though state-contingent

and time-varying. Section 3.1 discusses the state space and equilibrium.

Each year t proceeds as follows. First, the policy environment updates, with policymakers

announcing new standards and generators obtaining information about previously announced

standards. In some year t0, the regulator announces that an air toxics standard will be

enforced τ0 years in the future. Before this year, generators do not expect to be subject to

any air toxics regulation. In years when enforcement is 0 < τ ≤ τ0 years away, generators

use new information to update their common belief of the probability that enforcement will

occur.12 We denote the full set of perceived probabilities Pτ0 , . . . , P1. Upon forming beliefs

Pτ , generators believe that they will continue to perceive the probability of enforcement

to be Pτ until the announced air toxics standard enforcement date. For U.S. states which

implemented their own air toxics standards, we assume that Pτ0 = . . . = P1 = 1.

Second, generators make adoption and exit decisions.13 Generators that have not yet

adopted abatement technology must decide whether to adopt the technology and pay an

adoption cost A − εjat, continue operating without adopting the technology and receive a

12While we allow for uncertainty about whether the standard will be enforced, we assume that the level of
the standard and the date of potential enforcement is certain.

13We do not model generators’ decisions to enter. Coal entry during our sample period is very limited and
entry that occurred resulted from prior decisions.
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payment εjct, or exit and earn a scrap value X + εjxt. The cost shocks to generator j, ~εjt ≡

(εjat, εjct, εjxt), are type 1 extreme value i.i.d. across options, years, and generators, and are

generator j’s private information at the decision point. These shocks arise as generators may

have idiosyncratic maintenance needs or contracts that cause variation in the costs of adopting

technology or exiting. Generators that have already adopted abatement technology or are

in years before air toxics standard announcement only need to choose between continuing to

operate or exiting. Section 3.2 details annual dynamic optimization.

Third, conditional on the technologies and capacities of generators and other sources,

generators earn annual profits from competing in hourly electricity markets. Their annual

revenues from selling electricity are the sum of the hourly wholesale electricity market prices

times the quantity supplied. Generators bear three types of costs: fuel; ramping; and oper-

ation & maintenance (O&M).

Finally, any exit or abatement adoption decisions made in this year are realized. At this

point, if this is the final year before potential enforcement, the regulator enforces the air

toxics standard with probability P1. If it is enforced, generators that have not adopted are

forced to exit immediately.

A limitation of our analysis is that we model each generator as an independent optimizer.

We believe that coordination in exit and adoption decisions across generators is limited

because the market for fossil-fuel electricity is relatively unconcentrated. In particular, we

find a mean HHI of 2,321 (with a standard deviation of 1,832) across the states and years

that we study.

3.1 Equilibrium and State Space

As discussed above, equilibrium effects are potentially important in our setting, but keeping

track of all rivals’ choices results in a curse of dimensionality that substantially complicates

estimation and equilibrium computation. Accordingly, we develop and apply a concept called

Approximate Belief Oligopoly Equilibrium (ABOE). In an ABOE, each player forms percep-

tions of market evolution conditional on its actions, where these perceptions are consistent

with equilibrium play when fit to a simple functional form. Each player chooses dynamically
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optimal actions based on these perceptions. Therefore, an ABOE consists of sets of strategies

for every player, aggregate market states, and moments on state transitions conditional on

the player’s actions such that: 1) the state-contingent strategies reflect optimizing behavior

given the aggregate states and moments, and 2) simulated state transitions that condition

on the actions of the player but otherwise use the candidate ABOE strategies yield these

moments.

Our approach is similar to moment-based Markov equilibrium (MME). In an MME, play-

ers also base their expectations of future states on moments. However, in an MME, there

are two types of players—dominant and fringe—and only dominant players understand that

they can affect the market state. In an ABOE, every player recognizes that it can influence

the aggregate state. We account for this awareness by allowing the expected distribution of

state transitions to condition on a player’s own actions.

In our case, the aggregate market states include three characteristics: (1) the (combined

IPP and non-IPP) coal capacity relative to the 95th percentile of hourly load in the market,

(2) the share of IPP coal capacity that has adopted abatement technology, and (3) the

natural gas to coal fuel price ratio. Additionally, generator j’s state includes its non-time-

varying characteristics: heat rate, heatj, capacity, Kj, coal price, fC , and fixed market

characteristics; its time-varying characteristics: annual profits, Πjt, Techjt, the belief year,

τ , years to potential air toxics standard enforcement, τ̃ ,14 and its cost shocks, ~εjt.

We include coal capacity and adoption share as market states because they will affect

pricing in hourly markets and dynamic oligopoly preemption incentives. We include the fuel

price ratio as a market characteristic because relative natural gas fuel price affects generators’

current and expected future profits and therefore their adoption and exit decisions. For

instance, if natural gas prices are low, then coal generators expect to operate less, receive

lower prices when they operate, pay higher ramping costs, and ultimately earn lower profits.15

Consistent with an ABOE, generators understand that their actions influence the first two

14If an air toxics standard has not yet been announced or the enforcement year has already passed, then
τ = τ̃ = 0.

15We focus on natural gas as the alternative fuel source since other fossil fuels such as distillate fuel oil are
more expensive than both coal and natural gas generation during this period. Further, we do not include
renewable generation during this period because generation was fairly low in the markets we study.
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market state variables. Specifically, a generator which chooses not to exit understands that

the coal capacity next period will be higher than if it chooses to exit. Similarly, a generator

recognizes that the share of capacity having adopted abatement technology next period will

be higher if it has adopted abatement technology than if it has not. Modeling expectations

of market evolution in this way allows generators to use their adoption and exit decisions as

costly preemptive signals. While we allow for the coal capacity and adoption share variables

to be determined in equilibrium, we assume that the fuel price ratio evolves exogenously,

meaning that it does not respond to coal technology adoption or exit.

We assume that generators believe that the conditional moments of the three aggregate

market state transitions reflect simple autoregressive processes. Specifically, we specify sep-

arate AR(1) regressions with normally distributed residuals for the evolution of each of the

state variables. These AR(1) processes approximate the combination of exogenous market-

level unobservables and the structural unobservables, ~ε, for all generators. Because each

generator believes that the market technology adoption share will depend on whether it

adopts, we specify different AR(1) regressions for adoption share conditional on that genera-

tor’s adoption versus non-adoption choice.16 Because market fundamentals may vary across

U.S. state and belief year τ , we further disaggregate our AR(1) regressions to this level.

Following the definition of an ABOE, for every U.S. state and belief year we compute the

equilibrium as a fixed point of dynamic optimization decisions and the AR(1) regression

coefficients.

3.2 Generator Dynamic Optimization

Generator j makes adoption and exit decisions based on its state, which includes the three

aggregated market characteristics noted above—denoted Ωt, its own time-varying character-

istics, (Techjt, τ, τ̃ , ~εjt), and its non-time-varying characteristics. When τ̃ = 0, generators

face a relatively simple choice between exiting or continuing. When τ̃ > 0, generators that

have not yet adopted abatement technology face an additional decision of whether to adopt

the technology. In this case, the value of continuing depends fundamentally on whether τ̃ = 1

16We do not specify different AR(1) regressions for the coal capacity ratio since generators that exit no
longer value the market state.
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or τ̃ > 1 because in years with τ̃ > 1, there will be no enforcement decision at the end of the

year and so the generator will get to continue even if it has not adopted.

Consider first the dynamic decision in a year with τ̃ = 1 (one year from enforcement)

in the case where the generator has not previously adopted abatement technology.17 The

generator faces the three choices of continuing without adopting, adopting, or exiting. If it

continues without adopting and the air toxics standard is enforced, it will be forced to exit

and receive X. We can write the Bellman for this case as:

Vj(Ω, T ech = 0, τ, τ̃ = 1, ~εj) = (1)

max
{

Πj(Ω) + PτX + (1− Pτ )βE[Vj(Ω
′, 0, τ, 0, ~ε′j)|Ω,No Standard] + σεjc,

Πj(Ω)− A+ β{PτE[Vj(Ω
′, 1, τ, 0, ~ε′j)|Ω, Standard]

+(1− Pτ )E[Vj(Ω
′, 1, τ, 0, ~ε′j)|Ω,No Standard]}+ σεja,

Πj(Ω) +X + σεjx
}
,

where a prime indicates next period’s value of the variable. Equation (1) shows that the

perceived probability of air toxics standard enforcement enters into the τ̃ = 1 value function.18

In (1), the first choice is to continue operating without adopting abatement technology. With

this choice, with probability Pτ , the air toxics standard will be enforced and the generator

will be forced to exit, while with probability 1 − Pτ , the air toxics standard will not be

enforced and the generator will never be forced to comply. The second choice is to invest in

abatement technology this year, which we indicate by updating Tech to 1 in the future state.

In this case, the generator is not forced to exit regardless of whether the air toxics standard is

enforced. For both of these choices, the continuation values are dependent upon whether the

standard is enforced because enforcement will potentially change the set of rivals remaining

in the market. The third choice is exit. Generators that have already adopted face a choice

between continuing and exiting that mirrors equation (1), except with no adoption choice

17Because generators believe that their enforcement beliefs will remain constant in the future, we must
consider instances where belief year, τ > 1, even though τ̃ = 1.

18We assume that Π is a function of Ω but not Tech for two reasons. First, our O&M cost estimates are
similar for generators that have adopted technology and those that have not. Second, while heat rates do
increase slightly following technology adoption, these effects are small (though they could be added to the
calculation of profits in a straightforward way).
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and no probability of being forced from the market if the standard is enforced.

Turning to the case of τ̃ > 1, we can write the Bellman equation for a generator that has

not previously adopted as:

Vj(Ω, 0, τ, τ̃ , ~εj) = max
{

Πj(Ω) + βE[Vj(Ω
′, 0, τ, τ̃ − 1, ~ε′j)|Ω] + σεjc, (2)

Πj(Ω)− A+ βE[Vj(Ω
′, 1, τ, τ̃ − 1, ~ε′j)|Ω] + σεja, Πj(Ω) +X + σεjx

}
.

In (2), generators believe that air toxics standard enforcement will be revealed in τ̃ years and

that they will continue to perceive an enforcement probability of Pτ for the next τ̃ − 1 years.

Unlike with τ̃ = 1, there is no chance of enforcement occurring in this year.

3.3 Annual Profits

The Bellman equations depend fundamentally on state-contingent annual profits, Πj(Ω).

Generators earn these profits by competing in hourly electricity markets over the year. Fol-

lowing Linn and McCormack (2019), we model the generator as having a choice in each hour

between: (1) generation at capacity, Kj; (2) minimum generation LjKj for Lj ∈ (0, 1); and

(3) not generating. Each year, t, includes hours h = 1, . . . , H, with generator j choosing a

generation quantity qjh ∈ {0, LjKj, Kj} in each of these hours.

As modeled in Borrero et al. (2023), we assume that hourly profits are revenues net of

fuel, ramping, and operations and maintenance costs, plus i.i.d. idiosyncratic, choice-specific

unobservables. Annual profits are thus:

Πjt =
∑
h

πjh ≡
∑
h

qjh × [ph − heatj × fC − om]− 1{q̃jh < qjh}rj,q̃,q + σgεgjhq, (3)

where ph is the per-MWh electricity price, fC is the coal fuel price (so that heatj × fC

are fuel costs per MWh), om is the per-MWh O&M cost, q̃jh is the generation quantity in

the previous hour, rj,q̃,q is the cost to generator j of ramping from q̃ to q, and εgjhq is the

idiosyncratic unobservable ramping cost shock that we assume is distributed type 1 extreme

value with a standard deviation, σg.

We include ramping costs in profits because they have been shown to be important in the
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context of electricity generation (Cullen, 2014; Reguant, 2014; Linn and McCormack, 2019),

and are particularly critical during our analysis period because of changes in the electricity

industry. Specifically, the advent of hydraulic fracturing (“fracking”) led to sharp declines

in the price of natural gas fuel starting around 2009. This, in turn, led to coal generators

frequently having fuel and O&M costs above wholesale electricity prices, which increased

generator cycling and hence the importance of ramping costs. As an example, in 2008, coal

generators in our data averaged 31.4 hours at their maximum generation level each time they

ramped to maximum generation, but this dropped to 21.0 hours in 2017.

4 Estimation and Identification

4.1 Adoption and Exit Parameters

We estimate our model using a full solution, nested-fixed-point approach, where the unit

of observation is a generator in a year.19 The structural parameters of the model are the

probabilities of MATS enforcement, P4, . . . , P1, exit scrap value, X, abatement technology

adoption cost, A, and standard deviation of the unobservable, σ. Because of the differences

between U.S. state air toxics regulations and MATS discussed in Section 2.1, we allow A

to vary based on whether the generator is subject to U.S. state or MATS enforcement. We

assume that generators that comply with their U.S. state standards do not face additional

costs from MATS compliance.20

For generators in the years between air toxics standard announcement and enforcement

which have not yet adopted, the dependent variable is the choice of continuing to operate,

exiting, and adopting. For generators in other years, the dependent variable takes on two

values, continuing to operate and exiting.21

19We choose a nested-fixed-point approach rather than a CCP approach, because generators subject to
MATS base their decisions on subjective enforcement probabilities that they revise over time, implying that
the data at time t+ τ will not inform us about generators’ expectations at time t.

20Two pieces of evidence support this assumption. First, as discussed in Section 2.1, generators subject
to U.S. state standards largely did not change their announced retirement decisions in response to MATS’
announcement. Second, using our analysis data, we find that SO2 emissions rates for generators complying
with U.S. state standards were not significantly lower in 2016 relative to their enforcement years.

21We do observe adoption in years before standards’ announcements. Although we do not directly model
the choice of adoption in these years, our data reflect each generator’s accurate adoption status at the start
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We search over values of these structural parameters. For each candidate parameter

vector, U.S. state, and belief year, we solve for the ABOE, which we use to calculate a

likelihood. The likelihood for any generator and year is the probability of the equilibrium

strategy given the observed action of continue, adopt, or exit, evaluated at the ABOE.

As discussed in Section 3.1, market evolution conditional on a generator’s actions is gov-

erned by three continuous states that evolve according to AR(1) processes. We initialize these

processes to the values in the observed data. Since the fuel price ratio evolves exogenously

to our model, this AR(1) regression remains constant throughout our solution process. We

update the coal capacity and adoption share AR(1) processes by solving for the fixed points

of generator Bellman equations, simulating data given optimizing choices, and rerunning the

regressions that underlie these processes. We repeat this process until we reach a fixed point

in both the regression coefficients and the Bellman equations. We calculate standard errors

via a parametric bootstrap, which we discuss in more detail in On-line Appendix A3.

For generators subject to U.S. state enforcement, A and X are identified by the state-

contingent rates at which generators choose each action given their expected profits. The

scale parameter, σ, is in turn identified by the inclusion of annual profits. Identification

of the MATS enforcement probabilities stems from the intuition underlying Figure 1: to

the extent that generators subject to MATS delay exit and adoption relative to generators

subject to U.S. state enforcement all else equal, our model will recover lower estimates of

their enforcement probabilities. While we allow A to vary based on whether the generator is

subject to MATS, identification is based on the exclusion restriction that exit costs are the

same for all generators. Finally, we do not include an annual fixed cost of operation, since

these are difficult to identify separately from exit costs (Collard-Wexler, 2013). Thus, our

estimates of X will capture the present discounted value of any fixed costs of operation.

4.2 Annual Profit and Pollution Surfaces

Our structural estimation relies on state-contingent annual profits, Πj(Ω), which in turn

depend on revenues and costs. We estimate ramping and O&M costs—including the expected

of any year.
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value of the idiosyncratic component of ramping costs— using the approach in Borrero et al.

(2023), and then calculate Πjt for every generator and year in the data. We allow ramping

costs to vary by generator capacity bins. We then calculate each generator’s annual profits

as:

Πjt =
H∑
h=1

[
qjhph − qjh × heatj × fC − r̂j,q̃h,qh1{q̃jh < qjh} − ˆom× qjh (4)

−σ̂gPr(qjh|q̃jh) log(Pr(qjh|q̃jh))
]
,

where we indicate our estimated parameters with hats. The second line in (4) captures the

expected value of the ramping cost unobservable, εgjhq, conditional on choice qjh. We calculate

the probability of each action at each hour, Pr(qjh|q̃jh), from our cost estimation.

We do not observe Πj(Ω) for every generator j and potential market state Ω. We there-

fore predict generators’ expected annual profits across their potential market states. We

perform this prediction by calculating Πjt for each generator-year in our sample and then

regressing it on gas fuel price, relative coal capacity, their interaction, and generator j’s fixed

characteristics, Kj and heatj. By assuming this functional form for the impact of these

characteristics on expected profits, we can interpolate—and potentially extrapolate—for our

estimation and counterfactuals to states that we do not observe in the data.22 This allows

us to avoid directly modeling hourly generation decisions and evaluating how they might

change in counterfactuals. In addition, since our predicted profits are a function of our state,

which includes aggregate moments, we assume that each firm in a given state believes that

it will get the predicted profits, in expectation. Together, these assumptions are required for

identification.

We also want to understand how SO2 pollution would vary under counterfactual policy

environments. We focus on SO2, since the value of MATS pollution reductions as calculated

by the EPA (Environmental Protection Agency, 2011) is dominated by SO2 and, consistent

with our measure of MATS compliance, reductions in other pollutants will likely be approx-

imately proportional to SO2 reductions. For these simulations, we approximate a pollution

22We have also investigated alternative specifications of this regression, such as a logged functional form,
finding similar results.
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surface with a similar regression to our profit regression, but where we use the log of annual

pollution as the dependent variable.

5 Results and Counterfactuals

5.1 Cost, Profit, and Pollution Estimates

We estimate ramping and O&M costs following Borrero et al. (2023), separately for genera-

tors in 5 capacity bins (0–100MW, 100–300MW, 300–500MW, 500–700MW, and >700MW).

Figure 2 reports the ratios of the ramping coefficients, r̂
σg , to the operating revenue coefficient,

1̂
σg , for all ramping parameters and all but the highest capacity bin.23 We find that ramping

from minimum to maximum generation (represented by orange diamonds) is the least costly,

ramping from off to minimum generation (green circles) is more costly, and ramping directly

from off to maximum generation in one hour (blue triangles) is the most costly. The fact

that ramping from zero to minimum is more costly than from minimum to maximum likely

reflects startup costs, which are captured by our ramping cost estimates. Figure 2 further

makes clear that ramping costs are strongly increasing in generator capacity. In fact, the

largest generators have extremely high ramping costs, with ramping from off to minimum

generation costing approximately $1.05 million.

Our ramping cost estimates are consistent with the finding that starting up from off is

particularly costly. Engineering estimates suggest that start-up costs for large coal plants

may reach $500,000 (Kumar et al., 2012). Engineering estimates conceptually differ from ours

in that they are based on models of excess fuel, non-fuel inputs, wear-and-tear costs rather

than revealed preferences, and hence may provide a lower bound through omitted categories.

Estimates based on revealed preferences from Cullen (2014) similarly find extremely large

start-up costs. Reguant (2014) finds start-up costs of e15-20k for a 150MW coal generator

and approximately e30k for a 350MW coal generator in Spain.

Turning to operations and maintenance costs, we find that generators on average pay

O&M costs of $15.18 per MWh of generation, corresponding to just over $3,000 for a 200MW

23The highest capacity bin has ramping estimates that follow the same pattern as the smaller bins, but
has a substantially larger scale. We do not show the results for this bin for scaling reasons.
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Figure 2: Variation in Ramping Cost Estimates with Capacity
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generator operating at full capacity. This estimate is close to the EIA’s National Energy Mod-

eling System estimates of approximately $14/MWh, which is used in Linn and McCormack

(2019).

Once we have recovered estimates of ramping and O&M costs, we calculate the generator

profits for generator-years in our analysis data. The 5th percentile of calculated profits is

-$15 million and the 95th is $56 million, with 65% of annual profits above zero. The sizable

share of calculated profits that are below zero suggest that there may be substantial option

value to remaining in operation or sizable exit costs. On-line Appendix Figure A1 presents

a histogram of these calculated profits.

Turning to our estimated profit and pollution surfaces, Table 4 presents the results of

our regressions of calculated profits and pollution on model states. The profit regression R2
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Table 4: Profit and Pollution Surface Regression Results

Annual Profit Log Annual Pollution
(millions of $) (lbs of SO2)

Compliant −1.285∗∗∗ (0.054)
U.S. State Coal Share −5.505∗∗∗ (1.701) 0.335∗∗∗ (0.064)
Gas to Coal Fuel Price Ratio 9.371∗∗∗ (0.819) 0.798∗∗∗ (0.042)
Interaction of Coal Share and
Price Ratio

2.681∗∗∗ (0.773) −0.182∗∗∗ (0.064)

U.S. State Coal Fuel Price ($) 16.231∗∗∗ (1.230) −0.728∗∗∗ (0.182)
Heat Rate (MMBtu/MW) −0.648∗∗∗ (0.133) 1.278∗∗∗ (0.244)
Capacity (MW) 0.052∗∗∗ (0.004) 0.985∗∗∗ (0.046)
Constant −55.418∗∗∗ (4.109) 7.847∗∗∗ (0.809)

Observations 3035 2819
R2 0.4778 0.9938

Note: Regression of calculated profits and log pollution from observed data on dynamic
model states. The pollution regression also uses logs of the independent variables other
than compliance and excludes generator-years with zero pollution. Standard errors are in
parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

is relatively high at 0.4778, and most of the parameters have the expected sign. Profits are

negatively correlated with U.S. state coal capacity (which includes both IPP and non-IPP

coal capacity). They are positively correlated with the fuel price ratio, and this correlation is

stronger when the U.S. state coal capacity is higher. Generators with higher heat rates—that

burn coal less efficiently—have lower profits. However, one coefficient with a counterintuitive

sign is the U.S. state coal fuel price. U.S. states with high coal fuel prices have higher

coal generator profits, which likely captures other attributes of these U.S. states. Because

this variable is fixed over time for any generator and does not vary in counterfactuals, this

counterintuitive sign is not concerning by itself.

Figure 3 shows that expected mean profits—as predicted with our regression of calculated

profits on model states—follow calculated actual profits well over time. The solid red line

shows the gas to coal price ratio, which indicates that when gas prices dropped, coal gener-

ator profits also dropped substantially. The blue long-dashed line shows that coal capacity

started falling approximately two years after the fall in gas prices, with gradual exit contin-
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Figure 3: Variation in Coal Capacity, Mean Profits, and Fuel Prices Over Time
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uing throughout the rest of the sample. Our structural model will attribute this pattern to

idiosyncratic shocks to the value of exit.

The pollution surface regression, presented in column 2 of Table 4, has three differences

relative to our profit surface regression. First, we include whether the generator is compliant

with air toxics standards in the observation year, since the goal of compliance is to reduce

pollution. Second, we log both pollution and the dependent variables other than compliance.

Finally, we run this regression only for generator-years with non-zero pollution. This regres-

sion has a high R2 of 0.9938, and all of the coefficients have the expected sign. Specifically,

compliance and coal fuel prices are associated with lower pollution. Higher coal capacity,

generator heat rate, and generator capacity are all associated with higher pollution. Impor-

tantly, we observe a positive baseline coefficient on gas prices relative to coal prices. This
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is consistent with our priors since we would expect coal generators to run more when gas

prices are higher. The fact that this effect is decreasing as the coal capacity increases is

also consistent with the idea that this increased generation would be spread over more coal

generators in this case.

5.2 Results of Adoption and Exit Model

Table 5: Structural Parameter Results

Base Same Adoption
Specification Cost

State vs. MATS

Predicted Enforcement Probabilities:
Probability 2012 1.000∗∗∗ (0.061) 0.999∗∗∗ (0.080)
Probability 2013 0.699∗∗∗ (0.120) 0.525∗∗∗ (0.159)
Probability 2014 0.433∗∗∗ (0.109) 0.306∗∗ (0.139)
Probability 2015 0.999∗∗∗ (0.107) 0.997∗∗∗ (0.103)

Generator Costs:
Adoption Cost (million $) 150.9∗∗ (75.1) 413.9∗∗∗ (41.8)
Extra MATS Adoption Cost (million $) 398.7∗∗∗ (72.1) –
Exit Scrap Value (million $) −196.4∗∗∗ (37.4) −196.8∗∗∗ (42.6)
1/σ (million $) 63.6∗∗∗ (5.7) 63.4∗∗∗ (6.5)

Simulated Log Likelihood −628.34 −637.88

Note: Structural parameter estimates from nested-fixed point estimation. Standard
errors calculated via a parametric bootstrap are in parentheses. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 5 presents our structural results for two potential specifications. The first column

presents our base specification, where generators subject to MATS are allowed to have differ-

ent adoption costs than generators subject to state standards. We find that in 2012 generators

perceived that MATS was essentially certain to be enforced. This probability drops to 70%

in 2013 and to 43% in 2014 when the U.S Supreme Court agreed to hear arguments in the

MATS case (Michigan v. EPA). By 2015, however, generators realized that MATS was again

very likely to be enforced in 2016, with the probability again rising to nearly one.
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As shown previously in Table 2, generators subject to MATS disproportionately exited or

adopted in both 2012 and 2015 compared to 2013 and 2014. This is reflected in our perceived

probability estimates. The high 2012 estimate may reflect the fact that we assume that the

MATS enforcement probability was 0 prior to 2012, but generators likely had expectations

of a positive enforcement probability. The large number of exits and adoptions in 2012 may

be the result of generators anticipating an air toxics policy before 2012, but not knowing the

details of the policy until 2012. Indeed, we see the number of generators subject to MATS

that exit dip from 15 in 2010 to 6 in 2011, before rising to 23 in 2012. We therefore interpret

our 2012 probability estimate with caution. The remaining estimates however, suggest that

generators’ actions revealed substantial uncertainty surrounding 2016 MATS enforcement.

Beyond generators’ perceived probabilities of enforcement, we find that adopting air toxics

abatement technology costs generators subject to state standards $151 million. Adoption

costs generators subject to MATS an additional $399 million, consistent with the evidence

that compliance with MATS may be more expensive due to more stringent standards and

enforcement. These are substantial costs given that the mean generator profit during our

sample period is approximately $13 million. We further estimate that generators need to

pay $196 million in exit costs (negative scrap value) to shut down. One study has found

decommissioning costs for coal generators of up to $466,000 per MW, which is similar but

somewhat smaller than our estimates (Raimi, 2017). Our estimates are therefore consistent

with substantial site remediation costs and may also include avoided fixed costs (Collard-

Wexler, 2013).

The second column of Table 5 requires abatement costs to be identical across generators

subject to state standards and MATS. We find similar results, with adoption costs between

U.S. state and MATS adoption costs from the first column. Though the probability estimates

in 2013 and 2014 are smaller than in our baseline, the temporal patterns are quite similar,

starting at approximately one in 2012, falling in 2013 and again in 2014, and then recovering

to nearly one.24

24We also ran a model where adoption and exit costs are proportional to the generator’s capacity. This
model fits the data less well, but recovered broadly similar estimates of the probability of enforcement over
time.
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5.3 Counterfactual Results

Table 6: Counterfactual Results

Same Uncertainty
Estimated Mean Resolved No Exit

Data Model Prob.: in 2012 w/ Cost
0.7827 Mean Prob.

Adoption Costs (Bill. $) 7.30 6.99 6.53 5.10
Exit Costs (Bill. $) 19.24 19.15 18.74 0.00
Total Profits (Bill. $) 46.74 47.73 48.66 69.90
Pollution (Mill. lbs. SO2) 867.52 881.30 946.50 740.91

Number of Generators:
2012 191 191.0 191.0 191.0 191.0
2013 168 175.9 176.5 176.8 169.4
2014 149 163.0 163.1 163.6 151.6
2015 142 152.5 150.7 151.4 137.1
2016 121 129.5 131.0 135.0 111.0

Count Adopting 14 14.5 13.7 12.85 10.1

Note: Column 1 reports observed exit and adoption decisions in the data. Col-
umn 2 reports predicted outcomes at model estimates. Column 3 replaces the
estimated probabilities of 2016 MATS enforcement with the mean estimated prob-
ability across years. Column 4 calculates the expect outcomes with uncertainty
completely resolved in 2012, with the mean estimated probability across years.
Column 5 sets exit costs to 0. First four rows of results report the total discounted
profits or costs from 2012 through 2041.

We use the structural parameter estimates from our base specification to simulate a series

of counterfactuals. In each of the counterfactuals, we re-solve for the fixed point between

generators’ expectations of the evolution of the market state and their adoption and exit

decisions. Table 6 presents counterfactual discounted costs, profits, pollution, and exit and

adoption outcomes for generators subject to MATS enforcement over the 30 years from 2012-

2041.

The first two columns of Table 6 present the observed exit and adoption outcomes for

generators subject to MATS enforcement and the predicted outcomes using our model es-

timates. The model generally reproduces the data well. In particular it predicts that 14.2
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generators would adopt abatement technology while 14 adopted in practice. We slightly

underpredict the exit rate, which may be due to the estimation sample being different from

our counterfactual sample. Turning to the other outcomes in column 2, our model predicts

that generators will pay $7.3 billion in abatement technology costs, pay $19.2 billion in exit

costs, and earn $46.7 billion in profits, discounted and summed over the 30 year period. Our

estimates of generator abatement costs are similar to the EPA’s ex ante estimates of com-

pliance costs, which were $9.6 billion (Environmental Protection Agency, 2011). Generators

will also produce 868 million discounted pounds of SO2 pollution over this period.

The third column of Table 6 takes the average estimated probability (0.7827) from our

model and applies it evenly in all years, including in the enforcement year, so that MATS

is only actually enforced in 78.27% of simulation draws. This case is roughly similar to the

baseline in column 2—as intended—but it provides a simplified ex post uncertainty resolution

case that we use to compare to ex ante uncertainty resolution.

Specifically, column 4 of Table 6 similarly assumes a 78.27% probability of MATS en-

forcement, but this is decided randomly at the moment that MATS is announced in 2012.

This means that the level of the standard is identical to the counterfactual in column 3 in

expectation, but that there is no uncertainty after announcement over whether MATS will

be enforced. Thus the comparison between columns 3 and 4 provides a clear description of

the costs and benefits of resolving policy uncertainty earlier.

With uncertainty resolved at announcement, generator profits are $930 million higher

than when the uncertainty is resolved in 2016. Of this, $460 million comes from lower

adoption costs, and $410 million comes from lower exit costs. The remainder of the savings

accrue from generators timing their adoption and exit decisions to better take advantage of

time-varying costs such as maintenance downtime that affect adoption and exit costs via the

~εjt term.

While resolving uncertainty in 2012 increases profits by 1.9%, it also increases the number

of generators remaining in 2016 by 3.1%, and increases pollution by 7.4%. We use the EPA’s

regulatory impact analysis total pollution benefits range and SO2 pollution reduction from

MATS to calculate the range of benefits from reducing SO2 and related pollutants (Environ-

mental Protection Agency, 2011). This calculation implies that a one pound reduction in
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SO2 is worth between $12.41 and $33.83. This then implies that resolving uncertainty ex ante

would result in damages of $809 million to $2.206 billion via the 65 million pound increase in

pollution. This pollution increase is therefore critical to understanding the welfare impacts

of removing policy uncertainty.

Finally, the last column of Table 6 keeps policy uncertainty the same as in our estimated

model, but assumes that exit costs are fully subsidized. While this policy transfers exit costs

to the government, it also reduces adoption costs, since some generators choose to exit rather

than adopt pollution abatement technologies. This counterfactual results in 15.1% fewer

generators in the market in 2016 and a drop in pollution of 14.6% relative to the baseline

in the second column. In tandem, generators’ discounted profits rise dramatically, by 49.6%.

This column illustrates how achieving substantial reductions in coal capacity may be very

costly to the government.

5.4 Understanding the Impacts of Early Uncertainty Resolution

In order to better understand these counterfactual results, Figure 4 focuses on a conceptual

cumulative distribution function of a generator’s random shocks between 2012 and 2016 that

affect its exit decision. We focus on exit rather than adoption because exit was the primary

means of compliance for generators subject to MATS (as shown in Table 2).

The blue vertical line in Figure 4 represents the minimum shock that would lead the

generator to exit the market given the current policy with uncertainty resolution after the

generator makes its exit decision (ex post resolution). The blue horizontal dashed line in-

dicates the corresponding probability of exit. If, however, uncertainty was resolved at the

time of announcement (ex ante), then the generator would receive the shock after uncertainty

resolution. This would lead to different cutoff shocks depending on the enforcement decision,

which we represent with the two vertical red lines. Figure 4 places the cutoff shock with ex

post uncertainty resolution as 78.27% of the way between the two ex ante cutoff shocks to

correspond to our estimated likelihood of enforcement. We mark the expected exit probabil-

ity with ex ante uncertainty resolution with the horizontal red dashed line. This probability

is the weighted average of the exit probabilities from the two red vertical lines.
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Figure 4: Conceptual Exit Cumulative Distribution Function

Note: Conceptual cumulative distribution function for a single generator’s exit choice in a given year.

Our counterfactuals show that the exit probability with ex ante uncertainty resolution

is lower than with ex post uncertainty resolution. As we can see in Figure 4, this occurs

when the cutoff shock with ex post uncertainty resolution is on the concave portion of the

CDF: with a single-peaked distribution of exit shocks, the concave portion coincides with a

high probability of generator exit. This is consistent with the very low natural gas prices

during this period, which likely meant that some coal generators were very close to the exit

margin. Alternatively, if generators had seen substantially greater value to remaining in the

market, then resolving uncertainty ex ante would increase the probability of exit. This is the

continuous version of the oil drilling example in Section 1: if drilling costs $55 per barrel, the

expected future oil price is on the concave portion of its drilling CDF, implying that ex ante

uncertainty resolution would decrease the expected drilling probability, while the opposite is

true when drilling costs $65 per barrel.
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In general, earlier uncertainty resolution will increase generator profits by allowing them

to better respond to random shocks. With a single-peaked distribution of exit shocks (i.e.,

S-shaped exit shock CDF), it will also attenuate extreme outcomes in expectation by de-

creasing high exit probabilities (which lie on the concave portion of the adoption CDF) and

raising low exit probabilities (which lie on the convex portion). This again generalizes our oil

drilling example: in both cases earlier uncertainty resolution attenuates irreversible decisions

in expectation. This result contrasts with the real options literature’s result that reducing

the variance of future profits may increase irreversible investment.

6 Conclusions

This paper investigates the policy uncertainty surrounding a major U.S. environmental reg-

ulation, the Mercury and Air Toxics Standard. Because abatement technology adoption and

exit decisions are costly and irreversible, we estimate a dynamic oligopoly model of genera-

tor abatement technology adoption and exit behavior. Importantly, we estimate generators’

perceptions of the probability that MATS would be enforced in 2016 along with technology

adoption and exit costs. Our model is identified by the difference in abatement technol-

ogy adoption and exit decisions between coal electricity generators facing MATS and similar

generators facing U.S. state air toxics standards. We develop a new approximate equilib-

rium concept that we call Approximate Belief Oligopoly Equilibrium (ABOE) that allows us

to capture equilibrium effects and avoid the curse of dimensionality that would stem from

keeping track of the actions of the many generators within a market.

We find that there was substantial uncertainty over whether MATS would be enforced,

with generators’ perceived enforcement probability falling to 43% in 2014. The average

expected enforcement probability was approximately 80% over the 2012-2015 period. In

order to understand the impact of the timing of uncertainty resolution, we compare the

observed pattern of uncertainty to a counterfactual environment where there is the same

approximately 80% chance at the moment of MATS announcement that MATS would be

enforced in 2016, but this uncertainty is resolved instantly for all generators in 2012 with full

commitment. We find that resolving uncertainty earlier decreases the cost of complying with

33



MATS by $930 million, but increases pollution damages by $809 million to $2.206 billion as

it causes more generators to remain in the market in expectation.

Overall, these results highlight a difference with the real options literature, which shows

that decreasing uncertainty leads to more irreversible actions (corresponding to exit and

adoption for MATS). In contrast, resolving uncertainty earlier attenuates extreme outcomes

in expectation. When generators are close to the exit margin, this will decrease exit and

increase pollution. However, if generators were unlikely to exit, these factors would be

reversed and resolving policy uncertainty earlier might have decreased pollution.

Our results highlight the fact that regulatory discretion, while potentially allowing in-

frequent legislation to adapt to changing circumstances and technologies, can also increase

policy uncertainty. Recently, the 2022 Supreme Court case West Virginia et al. v. Environ-

mental Protection Agency added to this uncertainty by calling into question agencies’ roles in

formulating regulations. Our results imply that movements toward less regulatory discretion

will attenuate extreme outcomes in expectation, but the exact impact in any given setting

requires understanding the incentives that actors face.
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On-Line Appendix

A1 Evidence on U.S. State Air Toxics Standards

In the years before the EPA released the final MATS rule, a number of U.S. states drafted

and passed their own rules and legislation in order to tackle mercury emissions. This section

first documents how we determine U.S. state announcement and enforcement dates. Second,

we show supporting evidence for our assumption that U.S. state standards were certain

once announced. Finally, we explain why we believe that compliance with U.S. state-level

standards may have been less onerous than compliance with MATS.25

A1.1 Implementation of U.S. State Standards

Connecticut’s Public Act 03-72 was signed into law by Governor John Rowland in June 2003,

after gathering unanimous approval in both the state Senate and House (Jones, 2002). The

law specified an enforcement date of July 1, 2008 (Connecticut General Assembly, 2003).

Delaware’s Department of Natural Resources and Environmental Control designed the

“State Plan for the Control of Mercury Emission from EGUs.” This set of regulations came

into effect on December 11, 2006 (Hughes, 2006). The initial enforcement date was May 1,

2009 (Office of the Registrar of Regulations, 2006).

Illinois’ Mercury Rule was proposed on January 5, 2006 by Governor Rod Blagojevich

(Hawthorne and Tribune staff reporter, 2006). The regulation was formally adopted by the

Illinois Pollution Control Board on December 21, 2006 (Gunn, 2006). The enforcement date

was July 1, 2009 (Illinois Pollution Control Board, 2006).

In Maryland, a bill addressing mercury emissions was initially proposed in December 2005

(McIntire, 2005). After significant back-and-forth between Maryland’s Democratic legislature

and its Republican administration, the Healthy Air Act was passed into law on April 6, 2006

(Zibel, 2006). The enforcement date was January 1, 2010 (Maryland Department of the

25We thank Jacob Felton, Amy Mann, Rory Davis, Alison Ray, Joanne Morin, Bruce Monson, and Anne
Jackson from state agencies in Connecticut, Delaware, Illinois, Maryland, Massachusetts, and Minnesota for
assistance in understanding U.S. state regulations.
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Environment, n.d.).

The Commonwealth of Massachusetts adopted mercury standards on May 26, 2004 (United

Press International, 2004). The enforcement date was January 1, 2008 (The Massachusetts

Department of Environmental Protection, 2006).

Minnesota’s Mercury Emissions Reduction Act was signed into law on May 11, 2006.

Firms had to comply with the new mercury emissions limitations by December 31, 2010

(Minnesota State Legislature, 2006).

In Wisconsin, the Department of Natural Resources proposed new mercury emission regu-

lations pertaining to coal-fired utilities in September 2004 (Wisconsin Department of Natural

Resources, n.d.). It later revisited these and updated them in 2008. The regulations were

first enforced on April 16, 2016 (Legislative Reference Bureau Wisconsin, 2006).

As noted in Table A1, we specify the enforcement year as the first full year following

the enforcement date. The one exception to this is Wisconsin, where we used the MATS

enforcement year since MATS would have superseded the U.S. state policy.

In some cases, we assume that generators were subject to MATS instead of U.S. state

enforcement, even though we found evidence of U.S. state policies. Florida developed a cap-

and-trade policy based on CAMR rather than a technology standard (Congressional Research

Service, 2007). Michigan’s regulation was a backstop to MATS and would only come into

force if MATS was invalidated (Michigan Department of Environment, Great Lakes, and

Energy, n.d.). New Hampshire’s policy was essentially voluntary (Congressional Research

Service, 2007). North Carolina’s enforcement date was in 2018, substantially after MATS

(Congressional Research Service, 2007). Finally, as discussed in Section 2.1, Pennsylvania’s

standard was overturned by the state’s Supreme Court (Mustian and Demase, 2009).

A1.2 Enforcement Probabilities for U.S. State Standards

We assume that generators believed that U.S. state standards, once announced, would be

enforced with certainty. In three U.S. states (Connecticut, Maryland, and Minnesota), the

standard was passed as legislation. This reduces the potential for legal challenges as states

have authority to pass legislation that regulates pollutants for sources located within their
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borders. In other U.S. states, the standards were implemented via rule-making. In both

cases, standards were generally developed in conjunction with industry groups. For instance,

in Connecticut, the Senate chair of the environment committee commented that “[i]ndustry

took a look at that battle and realized it was in their interest to collaborate and compromise”

(Halloran, 2003). In Illinois, regulators included alternative emission standards at the behest

of local industry, which limited emissions from power plants as a whole rather than from

individual generating units (Illinois Pollution Control Board, 2006).

Overall, the U.S. state standard development process substantially decreased the potential

for legal challenges. In particular, for the seven U.S. states that we define to have air toxics

standards, we were able to uncover only one legal challenge: in Wisconsin, an industry group

sued the Wisconsin Department of Natural Resources in May, 2008 (Pioneer Press, 2008).

This challenge did not appear to be well-grounded since it was quickly dismissed in June,

2008 (Bauer, 2008)).

Despite the fact that U.S. state standards were essentially certain once passed, there was

uncertainty surrounding their initial announcements. Maryland’s Healthy Air Act provides

perhaps the most dramatic example of this uncertainty. Republican Governor Robert Er-

lich and the Democrat-controlled legislature drafted competing bills to address air pollution

(Pelton, 2006). The eventual bill that the legislature passed was closer to the Democrats’

version. Erlich’s staff allegedly locked his office door at 4:30 on a Friday afternoon at the

end of the legislative session to avoid him being presented with a set of bills that included

the Healthy Air Act. Legislative aides slid the bill under the governor’s door. Maryland’s

Attorney General determined that such action constituted presentment (Marimow and Mosk,

2006), and Erlich ultimately signed the bill (Zibel, 2006). Further illustrating that there was

uncertainty surrounding the initial announcements, some U.S. states such as Georgia pro-

posed mercury standards that were never put in place (Cash, 2006). We do not model this

source of uncertainty. This may be an additional reason why we find that generators subject

to federal standards perceived the probability of MATS enforcement to be 1 in 2012.
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A1.3 Compliance Costs for U.S. State Standards

While U.S. state standards regulated mercury similarly to MATS, there are at least three

differences between these standards that are important for our analysis. All three of these

differences implied that it would be less costly for generators to comply with U.S. state

standards than MATS.

First, most U.S. state standards covered substantially fewer air toxics than MATS. Specif-

ically, MATS regulated both mercury and air toxics, as required by Sierra Club v. EPA. In

contrast, none of the U.S. state laws or regulations referenced reductions in air toxics other

than mercury.

Second, U.S. state standards often had higher allowable emissions limits than MATS and

specified alternative compliance approaches. Specifically, MATS specified a mercury emis-

sions limit of between 0.0002 and 0.0004 lbs/GWh, depending on the type of coal (EPA,

2012). Connecticut specified a limit of 0.6 lbs/TBtu or a 90% mercury removal rate (Con-

necticut General Assembly, 2003). At the mean heat rate for generators subject to U.S. state

regulation in Table 1, 0.6 lbs/TBtu corresponds to 0.00063 lbs/GWh. Delaware specified

a limit of 1 lb/TBtu or an 80% reduction by 2010 (Office of the Registrar of Regulations,

2006). Illinois specified a limit of 0.0080 lbs/GWh or 90% reduction (Illinois Pollution Con-

trol Board, 2006). Maryland specified 80% reduction by 2010 (Maryland General Assembly,

2005). Massachusetts specified a limit of 0.0075 lbs/GWh or 85% reduction by 2012 (The

Massachusetts Department of Environmental Protection, 2006). Minnesota specified a 70%

reduction (Minnesota State Legislature, 2006). Wisconsin specified the minimum of a limit

of 0.0080 lbs/GWh and a 90% reduction (Legislative Reference Bureau Wisconsin, 2006).

Finally, enforcement of U.S. state standards was less rigorous in some cases. For instance,

in Connecticut, the regulator could deem generators that installed appropriate mercury re-

duction technologies to be compliant even if they did not comply with the emissions limits

(Connecticut General Assembly, 2003). In Wisconsin, a generator could argue for an ex-

tension if compliance would lead to a disruption of electricity supply (Legislative Reference

Bureau Wisconsin, 2006).
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A2 Data Construction

We use our data to construct a number of variables, focusing first on the adoption of tech-

nologies that lead to compliance with air toxic standards. Although compliance is a central

variable in our analysis, adoption of technologies that lead to compliance is not directly

reported in our data.

Many of the U.S. states that implemented air toxics standards early on specified that they

would determine compliance by using a CEMS to measure mercury emissions. However, this

technology was ultimately not reliable enough to use. States ended up measuring compliance

with a combination of technology reporting, periodic stack tests, and other emissions report-

ing. MATS—which was implemented after state air toxics standards—did not attempt to

measure air toxics compliance through a mercury CEMS.

Because the most cost-effective technologies that abate both mercury and other air toxics

also reduce SO2, one important way that the EPA determines MATS compliance is via SO2

emissions rates. In particular, the MATS final rule (77 FR 9304) specifies that generators

can comply with MATS by having SO2 emissions rates below 0.2 lbs/MMBtu.

For most generators, we observed a large decline in SO2 emissions rates in a particular

year before air toxics enforcement. For generators subject to MATS, these declines frequently

reduced annual average emissions rates below 0.2 lbs/MMBtu, although in a number of cases

the post-decline emissions rates were between 0.2 and 0.4, with some variation across years.

In contrast, pre-decline rates were typically well above 1. For this reason we define a generator

as having adopted abatement technology in the first year when (i) its 3-year forward moving

average SO2 emissions rate falls below 0.4, or (ii) its annual emissions rate falls by 40% or

more.26

We use a similar method to determine compliance with U.S. state air toxics standards.

The only difference is that we found that the post-decline emissions rates were typically below

0.7 but often above 0.4 lbs/MMBtu. Thus, we used a cutoff of 0.7 in our definition of com-

pliance with state air toxics standards. This is consistent with the evidence in Section A1.3

26In a small number of cases, we observe generators operating past the MATS enforcement date that did
not meet this definition. We define these generators as having adopted abatement technology before our
sample begins, to effectively remove their adoption choices from our data.
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that state air toxics standards may be less stringent than MATS.

Exit decisions are also central to our model because generators may respond to air toxics

standards by exiting the market. For our generator-year data set, we define a generator to

have exited after the last year in which we observe it generating with coal in the CEMS

data.27 For our generator-hour data set, we define a generator to have exited after the last

hour in which we observe it generating, unless there are fewer than 200 hours with zero

generation at the end of its appearance in the CEMS data, in which case we simply use the

end of its CEMS appearance as the exit hour.

Beyond adoption and exit, we also need to define generator fixed characteristics, specif-

ically, minimum and maximum generation levels conditional on generating, capacity, and

heat rate. We define a generator’s maximum generation level as the 95th percentile of its

observed hourly generation conditional on operating in the CEMS data. We also use this as

the generator’s capacity.28 We define a generator’s minimum generation level as its modal

generation level between the 5th and 60th percentile of capacity. We then bin hours with

positive generation into minimum and maximum generation levels based on whichever level

is nearer.

Finally, we calculate the heat rate of each generator at each hour using its heat input

divided by its electricity production. Our analysis uses a time-invariant measure of the heat

rate for each generator. Because generators operate most efficiently when generating near

full capacity, we define each generator’s time-invariant heat rate as the mean hourly heat

rate across hours in the maximum generation bin.

A3 Equilibrium Computation and Estimation

We estimate our model and conduct counterfactuals by solving for equilibria across candidate

parameter vectors, U.S. states, and belief years. We recover the equilibrium as the fixed point

of an algorithm that iterates between solving individual optimization decisions and estimating

27Thus conversions from coal to natural gas—as analyzed by Scott (2021) in response to MATS—will
appear as exits in our data.

28We choose the 95th percentile because while generators can generate above listed capacity, this extra
generation is extremely costly in the long-run.
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market evolution regressions that are generated by these decisions.

This appendix begins by detailing our model’s state space and explaining generators’

dynamic optimization. We then specify market evolution regressions and outline our fixed

point solution algorithm. Finally, we describe our bootstrap process for calculating standard

errors and outline our counterfactual calculations.

A3.1 State Space

Recall that the Approximate Belief Oligopoly Equilibrium (ABOE) of our model specifies

three time-varying aggregate market states which together form Ω—coal capacity relative to

the 95th percentile of hourly load, the share of IPP coal capacity that has adopted abatement

technology, and the ratio of natural gas to coal fuel price. The state for a generator also

includes its time-varying characteristics—years to enforcement, belief year, and technology

adoption; and non-time-varying characteristics—capacity, heat rate, and fixed market char-

acteristics. We discretize the three continuous state variables into 1000 bins, with 10 grid

points for each state variable. We choose these grid points to be evenly spaced between 0

and maximum levels that depend on the variable and U.S. state. For the fuel price ratio,

this maximum is 120% of the maximum value observed in the data. For coal capacity, this

maximum is the higher of 0.1 and 120% of the maximum value observed in the data. For the

adoption share, this maximum is 1.

Units subject to MATS enforcement have discrete states {τ, τ̃ , T ech} based on the belief

year τ ∈ {0, 1, 2, 3, 4}, years to enforcement τ̃ ∈ {0, 1, 2, 3, 4}, and the unit’s technological

adoption status Tech ∈ {0, 1}. There are 21 total states. There is one state for τ = 0 as Tech

is not relevant in this case. There are two states for τ = 1 where τ̃ = 1 and Tech ∈ {0, 1}, four

states for τ = 2 where τ̃ ∈ {1, 2} and Tech ∈ {0, 1}, six states for τ = 3 where τ̃ ∈ {1, 2, 3}

and Tech ∈ {0, 1}, and eight states for τ = 4 where τ̃ ∈ {1, 2, 3, 4} and Tech ∈ {0, 1}. At

any moment in time, a generator has a given belief year, and so only perceives that a subset

of these discrete states are relevant.

Units subject to U.S. state enforcement are certain about the standard being implemented

once it is announced. Thus, belief year τ is not relevant for these U.S. states. For these units,
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there are 1 + 2× (Enforcement Year− Announced Year) discrete states.

A3.2 Details of Generators’ Dynamic Optimization

We solve for generators’ optimal dynamic adoption and exit decisions given their beliefs

about current and future values of Ω using Bellman equations, as detailed in Section 3.2. For

each generator, discrete state, bin of the continuous state, conditional AR(1) state transition

moments, and adoption/exit/continue choice, we simulate the expected future value by taking

the mean over the values resulting from each of 200 co-prime Halton draw vectors. We

transform each vector into normal residuals using the AR(1) regression mean squared errors

and calculate the value function of each resulting state. Since these resulting states will

potentially lie between grid points, we approximate their values by linearly interpolating

across the nearest two grid points in each of the three dimensions (resulting in an interpolation

over 8 grid points).

When τ̃ > 0, the distribution of future values depends on whether the generator chooses

to adopt or continue. Specifically, in making the choice to adopt new abatement technology,

generators recognize that the adoption share will include one additional adopter next period.

In the choice to continue instead of adopting, this adopter will not be present. For generators

that have already adopted, their choice to continue does not affect the adoption share evo-

lution. They therefore rely upon coefficients from three different adoption share regressions

in their choice-specific value function calculations, as we discuss below. When τ̃ = 0, future

adoption share is not relevant.

A3.3 Market Evolution Regressions

As discussed in Section 4.1, market evolution is governed by three continuous states that

evolve according to AR(1) processes. We assume that the residuals of these state evolution

regressions are i.i.d., allowing us to simulate them with co-prime Halton vectors as discussed

above. We discuss each of these evolutions in turn.

First, since the fuel price ratio evolves exogenously to the model, we estimate a simple

AR(1) regression of fuel price ratio on its lag and a constant term. Because we are identifying
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this regression from data—rather than model simulations—we estimate one regression across

our entire sample.

Second, coal capacity is the sum of the non-IPP and IPP coal capacity (relative to load).

We specify an exogenous AR(1) regression for non-IPP coal capacity, where it depends on its

lag, the lagged fuel price ratio, the interaction between these two variables, and a constant.

Similar to the fuel price ratio, we estimate one non-IPP coal capacity regression across our

entire sample. The IPP coal capacity evolves endogenously in the model. For each U.S. state

and year, we simulate the next year’s IPP coal capacity by simulating generators’ decisions

given their optimizing behavior as calculated from the Bellman equations. Generators only

value knowing future coal capacity in the case where they do not exit. Our simulations

approximate this endogeneity of future market structure by randomly selecting one generator

to remain active, regardless of its simulated strategy. To simulate the overall coal capacity,

we add a draw of IPP coal capacity (derived from the model) to a draw of non-IPP coal

capacity (derived from our non-IPP regression). When outside the enforcement window, coal

capacity depends on its lag, the lagged fuel price ratio, their interaction, and a constant.

When inside the enforcement window, we add the lagged adoption share and years to air

toxics standard enforcement as additional regressors.

Third, the share of IPP coal capacity that has adopted abatement technology also evolves

endogenously to the model. During the enforcement window, we model the share that has

adopted as being a function of its lag, the lagged fuel price ratio, the interaction, the years

to air toxics standard enforcement, and a constant. As noted above, generators recognize

that their choices will affect this evolution. Accordingly, we estimate three versions of this

regression, corresponding to the choices of adoption, continue (when not yet adopted), and

continue (when previously adopted). As with IPP coal capacity, we approximate this effect

in the first two cases by randomly selecting one generator that had not already adopted and

requiring that it adopt or not. When the generator has already adopted, we do not need to

randomly select the actions of any generator.

Because we run the coal capacity and adoption share regressions on simulated data, we

choose the number of observations and values of the regressors. The number of observations
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is the product of the number of simulation draws and simulation years. We start with 1000

simulation draws and 14 simulation years, increasing the number of simulation draws in

case of convergence difficulties. We start the regressors at the values in the first year of

our sample, 2006. For the coal capacity regression, we use as the dependent variable the

expectation of the IPP coal capacity in the next year—given optimizing generator policies—

plus a simulated draw from the (exogenous) non-IPP coal capacity process. Similarly, for

the adoption regression, the dependent variable is the expectation of the adoption share in

the next year, again given optimizing policies. We use expectations rather than simulation

draws in order to reduce the variance of our dependent variables.

In contrast, to construct the following year’s regressors, we need to simulate choices

given optimizing generator adoption and exit decisions. We do this using a simulation draw

from each AR(1) process. We deviate from this updating process in one case in order to

obtain sufficient variation in the adoption share variable. Specifically, in the year of standard

announcement, we start half of the simulations with each generator having adopted with 0.25

probability and the other half with each generator having adopted with 0.75 probability.

We let the probability of enforcement at the end of the final year before enforcement be

equal to Pτ . We therefore simulate the realization of enforcement as a correlated shock to all

units in the state.

A3.4 Bootstrapped Standard Errors

In order to calculate standard errors for our parameter estimates, we conduct a parametric

bootstrap. This involves simulating 25 data sets created from the equilibrium evaluated at

the parameter estimates and re-estimating our model on these data sets.

We solve the equilibrium following the same nested fixed point approach as in our esti-

mation. For the same U.S. states and years as our base data, we then simulate generator

adoption and exit and fuel price ratio and non-IPP coal capacity evolution. We assume that

generators make decisions in each year to enforcement, τ̃ , given contemporaneous beliefs, τ ,

so that τ = τ̃ .

In our simulations, we assume that the exogenous processes—fuel price ratio and non-IPP
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coal capacity—evolve according to the AR(1) processes estimated from the observed data.

We begin our simulations with these variables set to their actual 2006 values.29 In each

subsequent year, we update these variables by drawing from their evolution distributions.

We also begin the endogenous market state variables—IPP coal capacity and adoption

share—at their observed 2006 values. We simulate the evolutions of these variables by ag-

gregating simulated draws from generators’ equilibrium strategies.

For convenience, we modify our bootstrap sample from our analysis data in two ways.

First, while a few IPP coal generators enter the sample after 2006, we assume that they are

present starting in 2006. Second, we limit the realizations of the exogenous processes to not

go below 0.01.

A3.5 Counterfactual Calculations

We calculate counterfactual outcomes using a similar approach to how we simulate data for

our bootstrap. This involves solving the ABOE of the model and then simulating data.

Our approach differs in four ways. First, in each counterfactual, we use different values of

the structural parameters. Second, we limit our analysis to only those generators that are

subject to MATS enforcement. Third, our counterfactual analysis covers a different time

period than the bootstrap. In particular, we begin our analyses in 2012 when MATS was

announced and simulate forward 30 years, in order to understand the long-run effects of

alternative policy environments. Finally, in order to understand the effects of counterfactual

policy environments on pollution outcomes, we calculate the expected pollution outcomes for

each of our counterfactual simulations, using our pollution surface introduced in Section 4.2.

A4 Extra Tables and Figures

29Florida and Michigan do not report any IPP coal generators until 2008. We therefore start our boot-
strapped data sets in 2008 for these states.
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Table A1: Announcement and Enforcement Years for U.S. State Standards

State Announced Enforced

Connecticut 2003 2009
Massachusetts 2004 2009
Maryland 2006 2011
Illinois 2006 2010
Delaware 2006 2010
Minnesota 2006 2011
Wisconsin 2008 2016

Note: Announcement and enforcement years are based on sources dis-
cussed in Appendix A1.

Figure A1: Distribution of Calculated Profits
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Note: Histogram of annual profits as calculated with equation (4) and estimated ramping and O&M costs.
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