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Abstract

�is paper estimates an imperfect information discrete choice model of drivers’ refueling
preferences and analyzes the implications of these preferences for electric vehicle (EV)
adoption. Drivers respond four times more to stations’ long-run average prices than to
current prices and value travel time at $27.54/hour. EV adopters with home charging re-
ceive $829 per vehicle in bene�ts from avoiding travel to gas stations, whereas refueling
travel and waiting time costs increase by $9,169 for drivers without home charging. In-
creasing the charging speed of the existing network yields 4.7 times greater time savings
than a proportional increase in the number of stations.
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Introduction

American households spend more each year on transportation than on healthcare, food, or
entertainment—with fuel purchases alone accounting for over $2,000 of a typical household’s
annual expenditure (U.S. Bureau of Labor Statistics, 2020). On top of these private costs, gaso-
line combustion also creates harmful tailpipe emissions which has led to wide-ranging policy
interventions including gasoline price constraints (Deacon and Sonstelie, 1985), fuel economy
and emissions standards (Ito and Sallee, 2018), mandatory station price disclosure (Luco, 2019),
and strategic petroleum reserves (Teisberg, 1981). More recently, policymakers have sought
to encourage the transition from gasoline to electricity as the dominant transportation fuel.
Because nearly all drivers currently refuel at gas stations, such an energy transition would
require large-scale investment in electric vehicle (EV) charging stations. Recognizing this,
the 2021 Infrastructure Investment and Jobs Act included funding to build half a million new
charging stations.

Evaluating the e�ectiveness and e�ciency of transportation fuel policies requires an un-
derstanding of how drivers make refueling decisions. However, we still know very li�le about
these decisions or the preferences that underlie them. �e lack of data on individual purchas-
ing has meant that the academic literature has focused on understanding �rm price se�ing
(e.g. Borenstein et al., 1997; Byrne and De Roos, 2019; Luco, 2019) and using this pricing be-
havior to form inferences about drivers’ behavior (e.g. Chandra and Tappata, 2011; Lewis,
2011; Yang and Ye, 2008), but has generally not been able to document drivers’ trade-o�s and
preferences directly.1 Yet these preferences are central to assessing a wide range of policies,
from station price disclosure laws to subsidies for electric charging station investment.

In this paper we use uniquely detailed data on driving and refueling behavior to under-
stand drivers’ fueling preferences and the implications of these preferences for transportation
electri�cation. We begin by using high-frequency GPS data on individuals’ driving routes,
gasoline refueling stops, and nearby station prices to document refueling pa�erns. Impor-
tantly, our data allow us to observe not only which gas stations drivers visit, but also the
alternative gas stations they could have visited nearby their travel routes. We show that the
median gas stop occurs within less than a one minute deviation from a driver’s shortest route,
despite the possibility of saving an average of $0.09 per gallon within a two minute deviation.

We further use these data to develop and estimate a discrete choice model of drivers’ re-
fueling decisions. Our model allows us to recover drivers’ value of time, understand how
they form perceptions of station prices, and simulate counterfactual choices with alterna-
tive fueling networks. On each trip, drivers in our model form expectations about the prices
they would pay and the quantity of fuel they would purchase at each station, and then de-
cide whether to stop for fuel and which station to stop at. �e model captures fundamental

1Some papers have used information on commuting pa�erns and gas station prices (and sometimes quanti-
ties) to be�er understand drivers’ preferences (e.g. Houde, 2012; Levin et al., 2017; Pennerstorfer et al., 2020), but
these papers have generally not had information on individual drivers’ trip characteristics or station choices.
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features of drivers’ refueling choice, including drivers’ lack of perfect information about all
stations, their increased incentive to stop for gas when their tank is low, their disincentive
to travel further out of their way or pay higher fuel bills, and their preference for certain
station brands. Our model incorporates imperfect information in two ways. First, because
we observe where drivers have traveled in the past, we can limit drivers’ choice sets to only
those stations previously passed by the driver, in case drivers are unaware of other stations
(Abaluck and Adams-Prassl, 2021; Goeree, 2008). Second, even if drivers are aware of stations,
they may be imperfectly informed about station prices. We therefore explicitly allow drivers
to form perceptions over the prices they would pay at each station that are a function of in-
formation such as the average price at a station and the current price at the station. Finally,
to capture drivers’ trade-o� between total fuel expenditure and other station a�ributes, we
model drivers as forming expectations over the quantity they would purchase at each station
prior to making a station choice.

We identify drivers’ value of travel time from their observed willingness to travel further
from their routes in order to pay a lower expected gasoline price. We �nd that drivers have a
high value of time of $27.54/hour, equivalent to 89% of the median wage of our sample group.2

�e value of time is a critical input into cost-bene�t analyses of transportation policy (Small
et al., 2005; Wol�, 2014), such as fuel economy standards, highway infrastructure investment,
gasoline station zoning laws, or EV charging station subsidies. Notably, our value of time
estimate is substantially higher than the estimate of 50% of the wage rate (White, 2016) used
by the U.S Department of Transportation, which suggests that policymakers may be under-
valuing the bene�ts of time-saving investments and regulations.

Our model also recovers an estimate of how consumers form perceptions of station prices,
which may di�er from actual prices due to imperfect information. We �nd that drivers respond
four times more to each station’s long-run average price than to its current price, which is
consistent with consumers using average prices as a proxy for current prices. Yet perhaps
surprisingly, we �nd that providing drivers with full information about prices would only
increase consumer surplus by $0.02 per gallon or $0.15 per refueling stop. �is low value of
information results from the fact that drivers �nd it very costly to travel to cheaper stations
that are away from their route �erefore, drivers gain li�le from learning about stations’ prices
located further from their routes. Overall, this set of �ndings supports recent research sug-
gesting that mandatory price disclosure policies may result in limited bene�ts to consumers,
particularly if the price disclosure facilitates �rm collusion (Byrne and De Roos, 2019; Luco,
2019).

Beyond understanding drivers’ preferences and the value of information in the gasoline
market, our estimates help shed light on how refueling infrastructure a�ects drivers’ incen-

2Median wage rates come from the Bureau of Labor Statistics’ Occupational Employment and Wage Statistics
for May 2010. We calculate the median wage as the average census-tract median wage where the drivers in our
sample live.
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tives to adopt EVs. Currently, homeowners are much more likely to purchase EVs than renters
(Davis, 2019), likely because only 25% of apartment residents have access to EV charging at
home (Ge et al., 2021; Traut et al., 2013). We �nd that the ability to charge overnight at home
yields valuable time-savings to drivers. In particular, our estimates show that EV adopters
with home charging access could save $829 in refueling time costs by avoiding trips to gas
stations over the lifetime of a vehicle.

On the other hand, there are many drivers who would need to rely on public charging
stations in order to charge their EVs. To understand drivers’ value of public charging infras-
tructure, we merge the locations of all public charging stations with our geospatial data on
drivers’ trips. We see that, on average, drivers’ routes in our data pass within �ve minutes of
over 37 gasoline stations, but only 4.75 charging stations. Combining additional behavioral
assumptions with our model’s estimates, we can simulate where drivers would be likely to
refuel an EV and the excess time associated with these stops. We �nd that in 2021, relying on
EV charging stations instead of gasoline stations would increase excess time spent refueling
from 2.5 minutes to 30.6 minutes per stop. More speci�cally, drivers spend an average of 1.8
minutes driving to gas stations and 0.7 minutes waiting at gas stations, whereas drivers spend
an average of 30 minutes walking round-trip to EV charging stations and 0.6 minutes waiting
at charging stations. �erefore, refueling an EV with public chargers would entail $9,169 in
increased time costs over the life of a vehicle. �is implies that, based on refueling time alone,
drivers that can charge at home would value an EV at $9,998 ($9,169+$829) more than drivers
without home charging. �us, improving public charging infrastructure will be essential to
encourage EV adoption by households without home charging.

Over the last decade, the number of U.S. charging stations has increased dramatically from
around 1,000 in 2011 to nearly 50,000 in 2021, and the share of direct-current (DC) fast charg-
ers has increased from 5% to 17% (DOE, 2022). We estimate that the increased station density
and charging speed over this period reduced the excess refueling time for an EV from 121.6
minutes to 30.6 minutes per stop. Moreover, we calculate the elasticity of our excess refueling
time measure with respect to the number of stations and the charging speed. �is exercise
reveals that increasing the speed of EV chargers would reduce drivers’ refueling times by far
more than increasing the number of charging stations, and that this gap has increased over
time as more stations have entered the market. More speci�cally, a 1% increase in average
charging speed in 2021 would generate 4.7 times more time-savings to drivers than a 1% in-
crease in the number of charging stations. Although our exact refueling time estimates are
sensitive to which assumptions we make, the headline comparison that investment in charg-
ing speed lowers drivers’ refueling time more than investment in additional charging stations
is robust across numerous alternative assumptions. �is set of results indicates that policies
that incentivize investment in DC fast charging infrastructure could yield greater bene�ts to
drivers than investments in additional charging stations with slower charging technology (e.g.
AC chargers).
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Beyond the papers mentioned above, this work contributes to four di�erent literatures.
First, we extend the literature on how drivers purchase gasoline using data on actual refueling
stops. One strand of this literature a�empts to measure drivers’ price elasticity of demand for
gasoline in order to understand the e�ect of policies such as gasoline taxes (e.g. Hughes et al.,
2006; Kni�el and Tanaka, 2021; Levin et al., 2017). Other papers have investigated the role of
search in gasoline purchasing and its e�ect on equilibrium market prices (e.g. Levin et al., 2019;
Lewis and Marvel, 2011; Pennerstorfer et al., 2020). Finally, researchers have used the gasoline
market to investigate other topics such as merger analysis (Houde, 2012), collusion (Byrne and
De Roos, 2019; Lewis and Noel, 2011), and household budgeting (Hastings and Shapiro, 2013).
�is paper uses trip-level data to be�er understand when and where drivers choose to refuel
and the information they use when making these choices, which has important implications
for all three of these areas of the literature.

Second, this paper relates to work on how consumers’ (potentially incorrect) perceptions
of prices and other product a�ributes a�ect choices and welfare. Namely, in our model drivers
make choices over whether and where to purchase gasoline without perfect information about
current prices at every station they could choose. Earlier work in this literature showed how
consumers’ misperceptions of product characteristics can reduce their welfare (Allco�, 2013;
Legge�, 2002; Liebman and Zeckhauser, 2004). Later work expanded this to include estima-
tion of consumers’ perceptions from their observed purchase decisions (Allco� and Kni�el,
2019; Allco� and Taubinsky, 2015; Houde, 2018; Ito, 2014). In this paper, we estimate drivers’
perceptions and calculate the value drivers would place on perfect information about station
prices. �is is important for understanding the potential value of mandatory price disclosure
laws or websites and apps that provide widespread price information.

�ird, we contribute to the established and growing literature on estimating consumers’
value of time, particularly as it applies to transportation decisions. �is literature has its roots
in early empirical work such as Beesley (1965), but gained �rm theoretical grounding with
Oort (1969) which built on the broader work by Becker (1965). Work in this literature has
recovered values of time from decisions over transportation modes (Lave, 1969), routes (Small
et al., 2005), speeding behavior (Wol�, 2014), and rideshare choices (Buchholz et al., 2020;
Goldszmidt et al., 2020). We provide what we believe is the �rst estimate of drivers’ value of
time from actual on-road refueling choices. Within this literature, the closest work to ours is
Deacon and Sonstelie (1985) which uses a natural experiment that looks at drivers’ willingness
to wait in line at one gasoline station rather than pay a higher price without wait at another
station. �at paper also �nds a high value of time (approximately equal to drivers’ a�er-tax
wages). Our value of time reinforces the other recent work in this literature (e.g. Goldszmidt
et al., 2020) , which suggest that the Department of Transportation’s current value of time—
one-half of the wage rate—likely undervalues public investments and policies that provide
time savings.

Finally, this paper adds to the important literature on the relationship between EV adop-
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tion and charging network investment. A series of theoretical and empirical papers have
modeled the interaction between EV purchasing and charging station expansion, focusing on
the “chicken and egg” problem of EV purchasers wanting assurances that they will be able to
charge their vehicles, but charging stations being unwilling to enter until there is a critical
mass of EVs on the road (e.g. Greaker and Heggedal, 2010; Li, 2017; Li, Jing, 2017; Springel,
2016). We build on this literature by providing the �rst empirically-based estimates of the re-
fueling time costs associated with EV adoption and by measuring the elasticity of these time
costs with respect to public investments in charging infrastructure.

We begin our analysis by describing our data and providing descriptive evidence on drivers’
refueling choices in Section 2. We then discuss our empirical framework in Section 3 and
present estimation results in Section 4. We apply our model to the valuation of EV charging,
both for drivers who can charge at home and those who cannot in Section 5. Finally, Section
6 concludes.

2 Data

Our analysis relies on data from the University of Michigan’s Transportation Research In-
stitute (UMTRI) on individual driver behavior and fueling stops and data from the Oil Price
Information Service (OPIS) on gasoline station locations and prices. In this section, we discuss
each of these data sets in turn and provide detailed descriptive evidence on the characteristics
of drivers’ routes, station locations, and fueling choices. We also augment the UMTRI data
with information on EV charging station locations from the Department of Energy’s (DOE)
Alternative Fuels Data Center to assess the value of EV charging infrastructure. We discuss
the DOE’s EV charging station data in Section 5.

2.1 IVBSS Experimental Data

We use driving data from the Integrated Vehicle-Based Safety Systems (IVBSS) study con-
ducted by UMTRI from April 2009 to May 2010. During this study, identical vehicles were
provided to 108 drivers in southeast Michigan for approximately 40 days each.3 �e objective
of the study was to observe driver responses to modern safety equipment including lane-
departure and collision warning systems. �e drivers used the vehicles as if they were their
own (including purchasing their own gasoline, although the cars were given to the drivers
with a full tank) and UMTRI collected a detailed dataset that included information such as
GPS location, speed, acceleration, heading, weather, and fuel use, at a frequency of ten obser-
vations per second. Cameras in the vehicles captured video of the driver and the surrounding
roadway.

3�ere were 117 drivers who were provided a vehicle. However, nine people were dropped from the sample
due to non-compliance with the experimental guidelines. For example, drivers were disquali�ed for insu�cient
use of the vehicle or sharing the vehicle with another driver.
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Appendix Table A.1 provides characteristics of drivers in the sample. Potential participants
were recruited at random from all Michigan license holders living within a radius of approx-
imately one hour’s driving time from Ann Arbor with clean driving records. Of the drivers
who expressed interest in the program, the �nal sample was strati�ed to give equal numbers
of males and females in three age categories: 20–30, 40–50, and 60–70, who drove above a
minimum number of miles per day on average.�e table shows that the average driver lived
in a census tract with median household income of approximately $64,000 per year which
is above the median household income in Michigan, $54,379. However there was substan-
tial variation across drivers, with census tract median household income ranging from below
$20,000 to over $145,000.4 Experimental participants drove 1,761 miles on average, equivalent
to 51 miles per day (18,500 miles per year). In total, UMTRI collected data on 6,275 hours
(224,700 miles) of driving.5

�e data include comprehensive, high-frequency information on vehicle operation and
driver behavior. In particular, we observe information about the time and location of every
driving trip during the experiment. We de�ne a unique driving trip as beginning each time a
driver turns on their vehicle and ending when the driver shuts the vehicle down. �e on-board
computers document the starting and ending latitude and longitude associated with each trip.
Additionally, we observe detailed data within each trip regarding the vehicle location, speed,
heading, fuel consumption, and more, which we use at the one second level. �ese detailed
data allow us to know exactly which route each driver took between the trip starting and
ending locations. Appendix Table A.1 shows that the average driver made over 200 trips.

We aggregate the high frequency data to obtain a trip-level data set on fuel consumption
and other variables of interest. Appendix Table A.2 provides details about the characteristics
of trips in our sample. �e median trip lasted 7.6 minutes (3.4 miles). Over half of trips lasted
between 3 and 16 minutes, however some trips were substantially longer so the trip time dis-
tribution is right-skewed. We also see that the median trip begins only 2.4 miles from the
driver’s home. About 26% of trips take place during on weekends. One variable not recorded
by the monitoring equipment was the fuel tank level. �e amount of fuel remaining in the
tank is the major factor that determines whether a driver stops to refuel and how much gaso-
line they choose to purchase. We recovered an estimate of the fuel tank level using images
from an in-car “over-the-shoulder” camera directed at the steering wheel and dashboard, com-
bined with second-by-second fuel consumption data. We describe details of this procedure in
Appendix B. We estimate that, on average, drivers begin each trip with about 7 gallons (37%)
remaining in the tank.

4We do not directly observe the drivers’ home addresses. We infer drivers’ “home address” as the most
frequent end destination of that driver’s trips. Appendix Figure A.1 shows the distribution of the drivers’ median
census tract income.

5Drivers were not compensated for their participation in the experiment other than through the use of the
car and a nominal payment for completing baseline and endline surveys.
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2.2 Refueling Choice, Gas Stations, and Prices

Although the IVBSS data provide extremely detailed information on the location of each trip,
the on-board computers did not directly collect information about each driver’s refueling
choices. �erefore, we match the vehicle locations from the driving data to a database of
gasoline stations in order to identify potential refueling stops. Gas station data come from the
Oil Price Information Service (OPIS) and contain the name, brand, address, and approximate
geographic coordinates for every gas station in Michigan and Ohio. We supplemented this in-
formation using aerial photography from Google Earth to add the exact latitude and longitude
of the gas pumps and each of the station entrances. As shown in Appendix Figure A.2, we
identi�ed every vehicle stop within a radius of 100 meters of a gas pump, and then reviewed
the rear-facing, le�-side camera images for all of these potential stops. If the camera showed
that the vehicle was stopped beside a gas pump (as in the �gure), the stop was coded as a
gasoline refueling stop. Drivers refueled an average of 8 times each during the experiment.
Appendix Figure A.4 illustrates the locations of the 865 gas stops we identi�ed in the data.

In addition to establishing gas station locations and brands, OPIS reports daily station-
level prices for the entire sample period.6 �us, OPIS and vehicle GPS data together allow us
to infer the gas prices paid by the driver at each of their stops.7 Importantly, the OPIS data
allows us to observe the gas price at every alternative station where the driver could have
chosen to stop instead. Appendix Figure A.3 shows the date and price of the gas stops, as well
as the average daily gas price across all stations in Michigan and Ohio.

For each driving trip we also calculate the excess time required for the driver to travel
from the trip starting location to each potential gas station and then to the trip ending location,
relative to the most direct route between the trip starting and ending locations. �e calculation
method for excess time is similar to that used by Houde (2012). Suppose the trip originates
at location A, proceeds to a gas station at location B, then continues on to location C. �e
excess time for the gas station stop at location B is the fastest time for the route A to B to
C, less the fastest time for the direct route from A to C. Travel times between points were
calculated using the Open Source Routing Machine (OSRM) applied to Open Street Map data
for Michigan and Ohio (Luxen and Ve�er, 2011). Figure 1 illustrates our excess-time (and
excess distance) calculation for an example trip in Sterling Heights, MI. �e green line plots
the fastest route from the driver’s origin to their destination without a gas stop. �e do�ed
red line shows the quickest route if the driver were to refuel at a Sunoco station located to the
southwest of their destination. �erefore, the excess time associated with choosing to stop

6�e OPIS data only report the price for regular gasoline. �e Honda Accords used for the experiment run
on regular gasoline and we consider it unlikely that drivers used a di�erent (and more expensive) gasoline grade
given that they do not actually own the vehicles.

7�ere are two potential issues with the OPIS price data. First, the data only report one price for each station
and day. If the price changes during the day, then the reported price may not be the same as the price paid by the
driver. Second, the data contain some missing daily price observations, particularly for gas stations in remote
areas. We used several di�erent interpolation mechanisms for the missing data. Final results are not sensitive to
the interpolation method.
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Figure 1: Example Trip Route including Nearby Refueling Options

Notes: �e green line shows the optimal direct route from origin to destination for a trip taken by driver #58 in
Sterling Heights, MI. �e red line shows the implied route if the driver chose to stop at a Sunoco station located
to the southeast of the �nal destination. Each point shows the location of gas stations near the driver’s route.
Prices are labeled for a random subset of the stations for clarity.

at this Sunoco station would be the time to travel the red route minus the time to travel the
green route. We perform this calculation separately for each station to determine the excess
time needed to visit each possible gas station within 20 minutes of the route.

�e bo�om of Appendix Table A.2 provides a summary of the number of stations available
to drivers during driving trips. Drivers typically have numerous refueling options. On an
average trip, a driver could access six gas stations within just one minute of their route, nearly
25 stations within 5 minutes, and over 100 stations within a 20-minute diversion. �is number
of stations seems reasonable given the suburban Detroit region where most of our data’s
driving occurs.

Figure 2 demonstrates that driving farther from their route provides drivers improved
options in terms of gasoline prices and brand options. In the le�-side panel, the red dashed
line shows the mean price a driver would pay at stations located within 15 seconds of their
route. �e blue line shows how the lowest price available (averaged over trips) changes with
each incremental minute further away from the optimal route. A driver can �nd lower prices
with each incremental minute of excess time for two reasons: 1) excess time from route is
likely to be correlated with overall tra�c �ows and stations located on more common routes
can charge higher prices, and 2) the driver can access a larger set of stations with longer
diversions so the expected minimum price available would fall even if price and excess time
were not correlated. We see that the largest incremental saving opportunities occur within

9



Figure 2: Price Frontier and Brand Variety by Excess Time From Drivers’ Optimal Route

Notes: In the le� panel, each point is the lowest available price o�ered (mean) by stations given the excess time
it would take the driver to reach those station on a trip where the driver stops to purchase gas. �e dashed line
shows the mean price that a driver would pay among stations located within 15 seconds of their optimal route.
�e right panel plots the mean number of unique gas brands that are available to drivers given the excess time
it would take the driver to reach those stations.

the �rst couple of minutes deviation from the route: a driver would save about $0.06/gallon
at the lowest-priced station one minute away from their route relative to the average price
available directly along their route. However, possible savings from driving further o� route
occur at a decreasing rate. In particular, a driver needs to travel an additional three minutes to
save an additional $0.06/gallon (four total minutes to save $0.12/gallon total). �e right panel
of Figure 2 shows that additional driving provides access to more brand options in addition to
lower prices. An average driver can reach three additional gas station brands by driving two
minutes o� their route and can access six additional brands by driving 10 minutes o� their
route.

During the period of our analysis, sites like gasbuddy.com were in their infancy and were
not widely known or used, so information about gas stations and prices would likely need
to be accumulated by actually passing the stations, or by discussing gas prices with others.
As a consequence, drivers may not always be aware of all stations and current prices near
their route. Using the high-frequency nature of the IVBSS data, we identify gas stations that
are more likely to be known to drivers: the set of gas stations that drivers have previously
passed in our data. We identify a station as being previously passed if the driver has passed
within one-tenth of a mile of the station location during any previous trip. �e green line
in the le� panel of Figure 2 illustrates that conditional on excess time, drivers are likely to
pay a somewhat higher price for gas if they only consider the set of stations that they have
previously passed. �e right panel shows that drivers will also choose from a smaller set of
gas brands if they only consider stations that they have previously passed.

Table 1 provides descriptive information for the 865 gas stops in Michigan and Ohio that
we observe in the driving data.8 Most drivers stop when their tanks are close to empty, with

8A small number of gas stops were identi�ed in states other than Michigan and Ohio. �ese stops are
excluded from our analysis due to the lack of price data.
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75% of stops occurring when the vehicle’s tank level is below four gallons, and the mean
quantity of gasoline purchased at each stop is slightly under eight gallons. �e mean gas
price paid by drivers in the sample is $2.60 per gallon, with an interquartile range of $2.50 to
$2.70. Drivers are equally likely to refuel during weekends relative to weekdays (weekends
represent 26% of stops and 26% of trips).

Table 1: Summary of Refueling Stops

Mean SD Pct25 Median Pct75
Tank Level at Start of Trip (gallons) 2.70 2.23 1.07 2.24 3.99
Purchase �antity (gallons) 7.82 4.89 4.10 7.72 11.64
Price Paid ($/gal.) 2.60 0.16 2.50 2.60 2.70
Weekend (0,1) 0.26 0.44 0.00 0.00 1.00
Station to Home ≤ 10 Miles (0,1) 0.68 0.47 0.00 1.00 1.00
Passed Station Previously (0,1) 0.86 0.35 1.00 1.00 1.00
Refueled at Station Previously (0,1) 0.18 0.38 0.00 0.00 0.00
Excess Time (min) 1.88 2.97 0.02 0.67 2.45
Excess Distance (miles) 0.83 1.89 0.00 0.12 0.86
Observations 865
Notes: Summary statistics are reported across all refueling stops in Michigan and Ohio made by all drivers

during the experiment. Pct25 and Pct75 are the 25th and 75th percentiles, respectively.

Beyond providing information about the trips on which drivers stop for gas, Table 1 de-
scribes the stations at which drivers choose to re�ll. Drivers are more likely to stop at stations
that they are likely to be familiar with: drivers pick stations located within 10 miles of their
home 68% of the time and choose stations that they have passed previously passed during our
sample period 86% of the time. Moreover, drivers return to the same station as they refueled
most recently 18% of the time.9

Beyond stopping at stations they are familiar with, drivers tend to refuel at stations that
are relatively close to their routes: the mean excess time for selected stations was 1.9 minutes
(0.83 miles). Figure 3a shows the distribution of excess times to the gas stations that drivers
choose to stop at (in green), compared to the unconditional distribution of excess times to all
potential gas stations (in gray).10 Gas stations are roughly uniformly distributed across excess
times, but unsurprisingly, drivers are much more likely to stop at stations close to their routes.
Indeed, nearly half of gas stops occur within 1 minute or less of the driver’s route. Moreover,
40% of stops occur directly along the driver’s route (within less than a 15 second deviation
from the optimal route). Although the typical gas stop occurs relatively close to a driver’s
route, Figure 3b shows that drivers usually do not pick the most convenient station available.
In particular, drivers almost always drive further out of their way for gas than they need to.

9BP and Speedway were the most common brands choices with an 20% and 15% share of the gas purchases
in our data, respectively. Appendix Table A.3 provides the share of stops at each brand in our data. Smaller
regional brands and unbranded stations were chosen at 13% of stops.

10We exclude stations more than 10 minutes away from the optimal route in this graphic for clarity.
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Figure 3b shows that drivers could have stopped at a station within 15 seconds of their route
on over 90% of trips but they choose the most conveniently located stations only about 40%
of the time. �is pa�ern of drivers choosing stations that are slightly out of the way but not
too far o� their route is consistent with the decreasing marginal savings from driving further
that we saw in Figure 2.

Drivers’ �nal choice of where to refuel will depend on which stations the driver is aware
of and actively considering. A driver previously passing a gas station is a useful indicator that
a driver is aware of that station. Table 1 reveals that nearly 90% of refueling stops occur at sta-
tions that drivers passed previously. Figure 3c plots the distribution of excess time to stations
that drivers previously passed compared to stations that the drivers had not passed yet during
the sample period. Unsurprisingly, previously passed stations are more likely to be located
closer to the driver’s route. In particular, nearly all stations located directly on drivers’ routes
were passed previously by the driver. Conversely, stations that were not previously passed
are more likely to be located further away from drivers’ routes. Figure 3d shows the price dis-
tribution for passed and non-passed stations. Passed stations have prices that are on average
$0.03 higher compared to non-passed stations (also see Table A.4), and speci�cally stations in
the le� tail of the price distribution, with very low prices, are much less likely to be passed
previously. �is pa�ern suggests that the expenditure coe�cients from a standard full infor-
mation discrete choice model would be biased because some stations with lower prices may
not actually be considered by drivers. In the next section we develop an empirical approach
to estimate driver preference that is both tractable and accounts for imperfect information
about stations and prices.
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Figure 3: Characteristics of Chosen, Non-Chosen, and Previously Passed Stations

(a) Excess Time: Chosen vs. All Stations (b) Excess Time: Chosen vs. Closest Station

(c) Excess Time: Passed vs. Non-Passed (d) Price: Passed vs. Non-Passed

Notes: �e histogram 3a shows the share of chosen stations that are at di�erent excess times out of the way
of the driver’s quickest route in green and the share of all stations that are within 10 minutes of the driver’s
quickest route in gray. Histogram 3b shows the distribution of excess travel time for chosen stations in green
and the distribution of excess travel time for the closest station to a driver’s quickest route in tan. Histograms
3c and 3d show the distributions of excess time and prices for passed and non-passed respectively.

3 Model of Refueling Choice

Our model incorporates drivers’ choice of whether to refuel, where to refuel, and the fuel
purchase quantity. On a given trip t = 1, ..., T , each driver i = 1, ...N has a choice of whether
to stop at each of k = 1, ..., K stations, and the outside option of not stopping for gas, which
we denote k = 0. �e utility that each driver receives for each station choice k = 1, . . . , K is
given by:

Uikt = αEi[pkt · qkt|Zikt] + γ ExcessTimeikt +X ′kβ +W ′
itδ + εikt (1)

where Ei[pkt ·qkt|Zikt] is driver i’s expected total expenditure (with unit price pkt and quantity
qkt) associated with refueling at station k on the date of trip t. �roughout this section, the
expectation operator Ei is understood to be taken over the driver’s subjective distribution
of stations’ prices given observable information available at the start of the trip, Zikt. �e
driver’s utility also depends on ExcessTimeikt, the additional travel time to visit station k on
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trip t,11 Xk, a vector of characteristics of the station k such as corporate brand, Wit, a vector
of characteristics of the trip and driver including the amount of gasoline remaining in the
fuel tank at the start of the trip and characteristics of the driver, and εikt is an idiosyncratic
preference shock. We normalize the utility the driver gets if they choose not to stop as Ui0t =

0 + εi0t.12 �erefore, in this model, the driver simultaneously makes the choice of whether
to stop on each trip and, if they stop, where to stop.13 �e unobserved error term εikt has a
generalized extreme value distribution for which εikt may be correlated with εik∗t (k 6= k∗ both
greater than zero), while εi0t is uncorrelated with all other εikt. �is error structure matches
that of the familiar nested logit model (Cardell, 1997) where all stations are in one nest, and
we denote the nesting correlation parameter as λ ∈ [0, 1].

In order to estimate Equation (1), we assume each driver makes refueling decisions as fol-
lows. At the start of each trip, the driver observes the information Zikt and the characteristics
of the choice set, Xk and the trip Wit. �e driver then uses these variables to form expec-
tations over the expected fuel expenditure at each station, Ei[pkt · qkt|Zikt]. A�er forming
these expectations, the driver observes their idiosyncratic preference shocks, εikt and makes
a choice over whether to stop and at which station to stop. �e driver then proceeds to the
station, observes the actual price at the station on that day and an additional idiosyncratic
shock, ηikt, that determines their true purchase quantity, and completes the purchase.

Unfortunately, we cannot observe each driver’s expected fuel expenditures at each station
at the start of each trip. To solve this problem, we start by partitioning the driver’s information
at the start of the trip into two components, Zikt ≡ {Z1ikt, Z2ikt}. �e �rst component, Z1ikt,
includes variables that a�ect drivers’ fuel purchase quantities, and the second component,
Z2ikt, contains variables that in�uence drivers’ price perceptions. Using this notation, we then
make two closely related assumptions about how drivers form expectations over purchase
quantities and prices:

Assumption 1 Drivers’ expectations over the quantity of gasoline they would purchase at each
station are a function of the vector Z1ikt. Conditional on Z1ikt, purchase quantities are indepen-
dent of drivers’ price expectations and the vector of unobserved idiosyncratic preference shocks,
~ε.

11Our calculation of the excess time out of the way to each station assumes that if the driver had made a
di�erent choice about where to stop for gasoline, they would still have traveled to that station from the same
starting location and would travel to the same destination a�er leaving the station. �is rules out a scenario, for
example, where a driver chooses to pick up co�ee at a di�erent co�ee shop depending on which gas station they
stop at.

12�is formulation of the utility of not stopping assumes that not stopping incurs a price expenditure of zero
and a time driven out of the way of zero. Since we do not observe instances in the data where drivers run out of
gas, we cannot recover the cost of running out of gas directly. Instead we allow this cost to be embedded in the
increased value of stopping for fuel as the tank level decreases.

13Our static model rules out the possibility that consumers make dynamic decisions about where to stop for
gas such as making a choice about whether and where to stop based on the characteristics of stations near the
next trip.
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Assumption 1 says that drivers’ expectations over their purchase quantities will be dependent
upon information such as current tank level, driver characteristics, and station characteris-
tics, which is captured in Z1ikt. �is assumption is critical to our empirical approach because
a driver who expects to purchase more gasoline—for instance because their tank level is low—
can expect to save more money by driving out of their way to a cheaper station than a driver
who expects to purchase only a small amount of gasoline. Assumption 1 further says that
a driver’s price expectation and idiosyncratic preference shocks are not allowed to directly
enter into the driver’s quantity expectation. Our assumption that gasoline purchase quantity
is inelastic with regards to price is consistent with Houde (2012) and Hastings and Shapiro
(2013), however, we do allow expected purchase quantity to depend on trip and station char-
acteristics such as station brand and tank level. We also validate the assumption empirically
in Appendix Table A.5 by regressing purchase quantities on prices, controlling for Z1. �is
exclusion restriction aids identi�cation of the full set of utility parameters, which we discuss
further in Section 3.1.

Assumption 2 Drivers’ expectations over the price they would pay at each station are a function
of the vector Z2ikt. Conditional on Z2ikt, drivers’ price expectations are independent of drivers’
purchase quantity expectations and the vector of unobserved idiosyncratic preference shocks, ~ε.

�e second assumption means that drivers form expectations of the per-unit price they
will pay at each station based on information like the long-run average price at that station,
the price the last time they passed that station, and possibly the current price at the station.
Our assumption is substantially weaker than the implicit assumption made in most discrete
choice models that consumers are perfectly informed about current prices. Consequently, our
modeling approach should reduce any bias that imperfect information would typically gen-
erate when estimating utility parameters using standard approaches. Assumption 2 explicitly
rules out that these expectations of prices will be a�ected by characteristics of the driver’s
particular trip, like their current tank level. As discussed above, these characteristics are al-
lowed to a�ect both the likelihood the driver stops on a given trip (via Wit) and the expected
purchase quantity (via Z1ikt).

We leverage these two assumptions to derive an empirically tractable formulation of the
utility model allowing for imperfect information. More precisely, we express driver i’s condi-
tional expected fuel expenditure at station k on trip t as:

Ei[pkt · qkt|Zikt] = Ei
[
pkt · Ei

[
qkt|pkt

]∣∣∣Zikt] = Ei
[
pkt|Z2ikt

]
· Ei

[
qkt|Z1ikt

]
, (2)

where the �rst equality follows from the law of iterated expectations and the second equality
applies Assumptions 1 and 2. �e above expression makes clear that we can specify functional
forms for drivers expectations of price and quantity separately.

We model each driver’s expectation of the unit price at station k on trip t as the weighted
sum of the station’s current price pkt and its long-run average price, pk, speci�callyEi[pkt|Z2ikt] =
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θpkt + (1− θ)pk. �e θ parameter is therefore the weight that information related to current
prices plays in the formation of drivers’ perceptions relative to information related to long-run
average prices at that station.14 Importantly, this speci�cation nests the special case where
θ = 1 and drivers are perfectly informed about current prices, as well as the case where θ = 0

and drivers only have information about long-run prices at stations. We also empirically ex-
plore whether replacing the long-run average price at the station with other variables, such
as the price the last time the driver passed the station, provides a be�er �t of the model to the
data.

We then additionally specify drivers’ conditional expected purchase quantity as a linear
function of individual, trip, and station characteristics:

Ei[qkt|Z1ikt] = Z ′1iktφ. (3)

Substituting these functional forms into the indirect utility function in Equation (1) we get:

Uikt = α
(
θpkt + (1− θ)pk

)︸ ︷︷ ︸
Ei

[
pkt|Z2ikt

] ·
(
Z ′1iktφ̂

)︸ ︷︷ ︸
Ei

[
qkt|Z1ikt

]+ γExcessTimeikt +X ′kβ +W ′
itδ + εikt. (4)

We estimate Equation (4) in two steps. In the �rst step, we estimate φ̂ by regressing �ll quan-
tities on the variables in Z1ikt. �e remaining parameters to estimate in the second step are
the expenditure sensitivity α, time sensitivity γ, the weight on information related to current
prices θ, preferences over non-price a�ributes β, the propensity of stopping to refuel δ, and
the nesting parameter λ. We estimate these parameters by pseudo maximum likelihood and
bootstrap the standard errors to account for the two-step estimation process.

Our two-step approach is similar in spirit to the common two-step approach for estimation
of dynamic models (e.g. Hotz and Miller (1993)). Notably, drivers in our model use the price
they expect to pay to form expectations of the total fuel expenditure if they stop at each station.
However, when the driver actually arrives at the chosen station, they observe the true price
on that day, pkt, and the idiosyncratic error, ηt, and choose the �ll quantity qkt given that new
information. �us consistency of the two-step estimation approach hinges on the validity of
Assumption 1. In particular, that drivers’ form expectations about their �ll quantity at each
station prior to making a station choice. �is assumption would be violated if drivers budget
a �xed dollar amount for gasoline (e.g. $20). In this case, the expected �ll quantity would be
mechanically related to the realized price at the station where the driver chooses to refuel.
To provide support for our assumption, Figure A.6 in the appendix plots a histogram of the
implied fuel expenditure across all refueling stops and shows that there is li�le evidence of

14We estimate pk for each station using the mean price over the two-year sample we observe in the OPIS
data.
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a discrete jump in expenditure at any speci�c dollar amount.15 Finally, our model imposes
an implicit assumption that drivers are not engaging in a sequential search for gas stations.
�is assumption is supported by the fact that gas prices that drivers observed recently are
uncorrelated with the decision to stop to refuel, conditional on tank level. �us, the observed
refuelling behavior is inconsistent with a sequential model of search (De los Santos et al.,
2012).

3.1 Identi�cation

To identify the expenditure coe�cient α, we rely upon Assumptions 1 and 2, which imply
that (expected) expenditure is not correlated with the idiosyncratic preference shock, εijt.
Here, Assumption 2 embodies the standard assumption that prices are uncorrelated with un-
observable product quality. �is is perhaps less of a concern for gasoline than for many other
products since gasoline itself is a homogeneous product. However, price still could be corre-
lated with the quality of the gas station’s non-gasoline characteristics such as its location or
convenience store. Our ability to observe each driver’s excess time to reach each station on
their current trip gives us the unique ability to control for the quality of a station’s location
as viewed by each driver. To account for the correlation between price and station a�ributes
such as the quality of the convenience store, we include gas station brand �xed e�ects in the
utility function.16

In our context, however, we need to also assume (via Assumption 1) that the expected
quantity of gas purchased at each station is uncorrelated with the idiosyncratic preference
shock, once we condition onZ1ikt. To ensure this assumption holds, we include every variable
that a�ects purchase quantity via Z1ikt directly in the utility function (e.g. in Xkt or Wit). To
see why this is necessary, suppose we allow gas brand to a�ect purchase quantity via Z1ikt.
�en, if a driver expects to purchase more gas at Costco, this will increase their expected
expenditure at Costco as well as their utility, since they will acquire more gas during such
a stop. �us, the Costco �xed e�ect in the utility function captures this extra gas purchase,
preventing it from entering the idiosyncratic error term and biasing our estimate of α.

Assumption 1 further implies that the expected purchase quantity can be identi�ed in
an initial regression of observed purchase quantities on the driver’s information, Z1ikt. �e
assumption rules out that there is anything beyond Z1ikt that a�ects the expected purchase
quantity and is correlated with preference shocks.17

15�ere is a small increase in the likelihood of expenditure around $20, but this increase would imply that
only very small percentage of refueling stops are a�ected by this type of budgeting.

16In the following section, we show evidence that this assumption is likely to hold in our se�ing, and that
controlling for additional station characteristics doesn’t change our results.

17�is rules out, for instance, a situation where drivers know that they will purchase more than their standard
amount of gasoline if they stop at a station with a particularly high εikt. Our preferred speci�cation includes gas
brand dummies in Z1ikt, so a violation of this assumption would only occur if drivers expect to purchase more
gasoline at a speci�c station relative to other stations with the same brand.
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�e weight that drivers place on information related to current price, θ, is identi�ed
through within-station price variation over time. As an example, consider a Costco station
that sets a relatively low long-run average price relative to other competing stations. On days
that the Costco station sets price at its long-run average price (pk = pkt), any θ ∈ [0, 1] im-
plies the same choice probability. �us, the station’s choice probability on a day that pk = pkt

allows us to identify α and the other utility parameters just as in a standard discrete choice
se�ing. Now consider a day when the Costco station sets price higher than its long run av-
erage price but all other competitors keep prices the same; θ is identi�ed by the extent that
drivers substitute away from choosing the Costco station on that day. If drivers do not change
their choices at all, then θ must equal one, but if Costco loses market share that implies θ < 1.
Assumption 1 guarantees that a change in Z2ikt, Costco’s current price in this example, does
not a�ect the driver’s expected quantity of gas, conditional on Z1ikt. �is exclusion restric-
tion therefore provides important variation for identifying θ. Finally, the identi�cation of the
remaining utility parameters β, δ, and λ follow standard arguments.

4 Results

We �rst present the results of our refueling choice model. We then use our estimates to calcu-
late drivers’ implied value of time and their potential gains from improved information about
gas stations and current prices. Finally, we explore heterogeneity in driver preferences and the
robustness of our results to changes to the model speci�cation and underlying assumptions.

4.1 Model Estimates

We report the estimates from the �rst step “�ll quantity regressions” in Table 2. In these re-
gressions, we allow the expected �ll quantity to vary as quadratic function of the drivers’ tank
level at the start of trip. In our preferred speci�cation, Column (4), we also allow the expected
�ll quantity to vary across gas station brands. �e regressions show that the expected �ll
quantity increases by approximately a half a gallon for each one unit reduction in the driver’s
initial tank level. �e intercept of regression in Column (4) implies that drivers’ expected
purchase quantity at an unbranded station (or small brand) is approximately 9 gallons if their
tank is empty at the start of the trip. We �nd that most gas brands are not associated with a
statistically signi�cant change in expected purchase quantity—notable exceptions are Costco,
Citgo and Speedway which are associated with higher expected purchase quantities relative
to unbranded stations, and Marathon which is associated with lower purchase quantities.

Table 3 presents estimates for several speci�cations of our indirect utility model. Namely,
the �rst three columns of Table 3 show the results for speci�cations where drivers are as-
sumed to be fully informed about current prices at all stations in their choice set. Columns (4)
through (6) of Table 3 show results for speci�cations that allow for imperfect information, in
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Table 2: Fill �antity Regressions

Fill �antity (Gallons)
(1) (2) (3) (4)

Intercept 9.121 9.172 8.882 8.854
(0.3201) (0.3977) (0.3437) (0.4268)

Tank Level -0.5138 -0.5214 -0.4159 -0.4226
(0.1902) (0.1883) (0.2173) (0.2148)

(Tank Level)2 0.0072 0.0083 -0.0130 -0.0125
(0.0230) (0.0228) (0.0278) (0.0275)

Observations 865 865 744 744
R2 0.04387 0.09119 0.05085 0.10267
Station Brand Fixed E�ects N Y N Y
Choice Set All All Passed Passed
Models 1,4 2 5 3,6
Notes: �e dependent variable is the imputed �ll quantity associated with each ob-

served refueling stop. In the models with brand �xed e�ects, the intercept represents
the �ll quantity at zero tank level for small brands and unbranded stations. �e re-
gressions estimates are used to predict expected �ll quantity conditional on stopping
for each trip on covariates. �e predictions are used as an inputs for the choice mod-
els presented in Table 3. �e �rst regression is used to predict expected �ll quantity
for Models (1) and (4) in Table 3, the second regression is used for Table 3 Model (2),
the third regression for Table 3 Model (5), and the fourth regression applies to Table
3 Models (3) and (6).

which drivers’ price perceptions are allowed to vary with either the current price or the long-
run average price (or both). �e �rst, fourth, and ��h columns show speci�cations without
station brand �xed e�ects and in the remaining Columns (2, 3, and 6) we add station brand
dummies for the ten most commonly chosen gas brands, with the remaining stations grouped
into a separate generic brand category. Finally, in Columns (3, 5, and 6), we restrict the choice
set to include only stations that the driver has previously passed, and therefore drop choice
situations where the chosen station had not previously been passed. Our preferred speci�-
cation is Column (6) which allows for imperfect price information, includes gas brand �xed
e�ects, and restricts the choice set to previously passed stations.

�e top section of Table 3 demonstrates how the value of stopping to refuel depends on
the amount of fuel remaining in the tank. We see that stopping becomes more valuable as
the driver’s tank level falls. Moreover, the quadratic term on tank level is negative in all
speci�cations implying that the probability of stopping is increasing at an increasing rate as
the tank level declines. Figure A.5 in the Appendix plots the empirical probability of stopping
across tank levels and shows that when tank level is over 50% the probability of stopping is
close to zero, but the probability rises non-linearly as the tank falls below 25%.

�e second section of Table 3 reports the parameters that determine the station choice
conditional on stopping. For the speci�cations that allow for imperfect price information,
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Table 3: Driver Preference Estimates

Full Price Information Imperfect Price Information
(1) (2) (3) (4) (5) (6)

Decision to Stop

1[Stop] × Constant 1.690 0.753 0.767 7.745 7.075 6.414
(0.357) (0.374) (0.358) (0.744) (0.697) (0.845)

1[Stop] × Tank Level -0.298 -0.244 -0.182 -0.644 -0.483 -0.453
(0.042) (0.044) (0.041) (0.055) (0.048) (0.052)

1[Stop] × (Tank Level)2 -0.037 -0.038 -0.052 -0.031 -0.060 -0.060
(0.005) (0.005) (0.006) (0.006) (0.007) (0.007)

Station Choice

α - Expenditure -0.172 -0.136 -0.138 -0.429 -0.409 -0.384
(0.015) (0.015) (0.015) (0.033) (0.032) (0.038)

θ - Weight on Current Price 0.168 0.172 0.169
(0.045) (0.047) (0.048)

γ - Excess Time (minutes) -0.202 -0.229 -0.168 -0.216 -0.160 -0.176
(0.013) (0.018) (0.016) (0.015) (0.012) (0.016)

Nesting Parameter

λ 0.358 0.406 0.337 0.378 0.317 0.350
(0.025) (0.031) (0.031) (0.025) (0.023) (0.031)

Station Brand Fixed E�ects N Y Y N N Y
Number of Stops 865 865 744 865 865 744
Number of Trips 22114 22114 21355 22114 21355 21355
Observations 2663807 2663807 815070 2663807 815070 815070
Choice Set All All Passed All Passed Passed

Implied Value of Time ($/hour)

70.51 101.24 73.37 30.19 23.42 27.54
(7.06) (14.00) (9.74) (2.18) (1.67) (2.45)

Notes: Table reports pseudo maximum likelihood estimates of driver preferences. �e expected �ll quantities
are predicted from the regressions in Table 2. �e full information models assume drivers know current gas
prices at each station and the imperfect information models allow drivers’ price perception to be a weighted
average of current price and station average price. λ is the nested logit correlation parameter. In models with
brand �xed e�ects, the constant in the decision to stop represents small brand and unbranded stations. Choice
Set = “All” indicates that all stations with 20 minutes of the driver’s route are included in the choice set. Choice
Set = “Passed” means stations that the driver has previously passed that are within 20 minutes of the route
are included in the choice set. Bootstrapped standard errors are reported in parentheses. �e implied value of
time (per hour) is calculated as 60 · γα .
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we estimate that drivers place a relatively low weight on current prices (16%-17%) relative
to long-run average prices when forming price perceptions. In other words, drivers respond
more than four times more to long-run variation in prices across stations compared to day-to-
day variation in station-level prices. For all speci�cations, both the price and the excess time
coe�cients have the expected sign and are statistically signi�cant. �at is, more expensive
stations and stations further from the driver’s route are less likely to be chosen.

�e gas brand coe�cients (not reported) show that Costco and Meijer are the brands most
likely to be chosen a�er controlling for price and location. Smaller brands (outside the ten
largest brands) are the least likely to be chosen conditional on price and location. Interest-
ingly, we �nd that the estimated expenditure coe�cients are slightly smaller in magnitude
a�er we control for gas brand �xed e�ects. Typically, we would expect brand controls to in-
crease the magnitude of the expenditure coe�cient if brand quality is positively correlated
with price. However in the gasoline market, high quality �rms may set lower gas prices
as a “loss leader” strategy to a�ract customers to visit their convenience stores or grocery
stores.18 �e estimates presented in Table 3 suggest that the bias from price endogeneity is
less problematic compared to the bias caused by mispeci�cation of consumer information in
this se�ing. However, to the extent that price is still correlated with unobservables, we expect
our estimates would be more likely to overstate the magnitude of the expenditure coe�cient
due to the apparent negative correlation between price and station quality. �us, our model
should provide a conservative estimate of drivers’ value of time which we discuss in the next
subsection.

4.2 Value of Time

By taking the ratio of the estimated coe�cients on excess time and expected expenditure,
we obtain estimates of drivers’ value of time (VOT). �e VOT provides a measure of driver
preferences that is both easy to interpret and important for policymaking. Intuitively, the
VOT is determined by the marginal rate at which drivers trade o� time savings—by selecting
more conveniently located stations—and expected dollar savings at the pump. Speci�cally, we
calculate the VOT as follows:

VOT = 60× dEi[pkt · qkt]
dExcessTimekt

= 60× ∂Uijt/∂ExcessTimekt
∂Uijt/∂ Ei[pkt · qkt]

= 60× γ

α
. (5)

Here, we multiply by 60 to convert the value of time from dollars per minute to dollars per
hour. �e �rst two speci�cations, in which we assume drivers consider all stations and know

18Some of these brands o�er discount cards or promotions bundled with supermarket purchases. As a result,
the price paid by some drivers may be less than the list price in our OPIS data. �is could also explain why these
brands are preferred a�er controlling for (list) price and location. We do not observe which customers have
discount cards in our data.
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all stations’ current prices, imply distinctly high values of time. We estimate a VOT of $71
per hour in the speci�cation without gas brand �xed e�ects and $101 per hour a�er including
brand �xed e�ects.

�ese VOT estimates will be biased upwards (the expenditure coe�cient will be biased to-
wards zero) if consumers are not aware of all stations and their respective prices. To account
for the possibility of limited consideration sets (Abaluck and Adams-Prassl, 2021; Goeree,
2008), we take advantage of our detailed information on drivers’ geospatial locations to iden-
tify stations that each driver passed within our sample period and therefore are more likely to
informed about. �e speci�cation in Column (3) assumes that drivers only consider (and are
informed about) the set of stations that they have previously passed and are within 20 minutes
of their route.19 �is speci�cation, which also includes brand �xed e�ects, yields a 28% lower
value of time of $73 per hour relative to Column (2).

Our VOT estimates fall substantially further a�er we allow for drivers to be imperfectly
informed about current gas station prices. In speci�cation (4), we include all nearby stations
in the driver’s consideration set but relax the assumption that drivers must know all current
prices, which implies a VOT estimate of $30.19 per hour. �e VOT estimate drops further to
$23.42 per hour in Column (5) when we add gas brand �xed e�ects. Comparing these results
to Houde (2012)—which �nds a very high value of time of $54 per hour in a model with
perfect information—and our earlier estimates suggests that properly accounting for drivers’
information set is important for recovering unbiased estimates of drivers’ VOT.

Our preferred VOT estimate of $27.54 per hour is in Column (6). In our preferred model we
allow for imperfect price information, include brand �xed e�ects, and limit the consideration
set to only previously passed stations. Comparing the VOT in the �rst three columns to the last
three columns of Table 3 makes clear the importance of modelling imperfect information. In
particular, our θ estimates imply that drivers respond very li�le to deviations in current prices
across stations relative to di�erences in long-run price di�erences across stations. Intuitively,
if drivers are not aware of changes in current prices, we will see relatively li�le substitution
towards stations that reduce prices on any speci�c day. �us, we would understate drivers’
willingness to drive further to save on gas expenditures if we assume that they know all of
these (current) prices. �erefore, our speci�cations that allow drivers’ price perceptions to
deviate from current prices leads to lower and more credible estimates of the VOT

Our preferred estimate of drivers’ VOT, $27.54 per hour, is somewhat higher than the
recent estimates by Goldszmidt et al. (2020) of $19.38 per hour. Noteably though, our estimates
are based on drivers’ value of driving time, whereas Goldszmidt et al. (2020) measure the

19Recall from Table (1) that drivers stop at stations that they have previously passed nearly 90% of the time.
�e speci�cation in Column (3) discards the stops at previously un-passed stations from the analysis. Figure (3)
illustrates why including the full set of stations in drivers’ choice sets would likely cause bias; previously passed
stations are more likely to be closer to the driver’s optimal route and also have higher average prices compared
to non-passed stations. �erefore, drivers may fail to choose cheaper stations that are further from their route
because they are not aware of these stations, which would in turn lead us to overestimate drivers’ value of time.

22



value of waiting time savings on a ride hailing platform.20 Our estimates are also higher than
the VOT currently used by U.S. government agencies, which ranges from 33% to 50% of the
wage rate.21 For our sample, US government guidelines would imply a VOT between $10.21
and $15.47 per hour. In contrast, our VOT estimate of $27.54 amounts to 89% of the median
household income for the census tracts in which our drivers live.22 �us, our estimates are
suggestive that US lawmakers may be undervaluing time-saving investments and regulations.

A relatively high estimate of the VOT has a numerous policy implications. For exam-
ple, investment in infrastructure that reduces travel time—such as highway expansions and
improvements—would yield larger bene�ts to drivers than would be implied using lower VOT
estimates such as those currently used by policymakers. Additionally, a high VOT indicates
that fuel economy standards over the past decade may create added bene�ts to drivers to the
extent that these policies reduce the amount of refueling stops that drivers have to make. As
a �nal example, drivers’ value of electric vehicles will be highly dependent upon the number
of charging stations available and the charging speed of those stations. We investigate this
third example in more detail in Section 5.

4.3 Value of Information

We next use our model to evaluate the consumer welfare e�ects of imperfect information in
the refueling market. Our previous estimates show that drivers are not perfectly informed
about current prices and respond much more strongly to stations’ long-run average prices.
In addition, the empirical evidence suggests that drivers are not aware of all stations that are
available nearby their route when making refueling choices. �erefore, we calculate the gains
to drivers from obtaining be�er information about available gas stations and prices, which
is relevant for assessing the market impacts of government price disclosure requirements or
price reporting websites and apps (Byrne and de Roos, 2017; Byrne et al., 2015; Lewis and
Marvel, 2011; Luco, 2019).

We measure the welfare e�ects of changing drivers’ information using a similar frame-
work to Legge� (2002), Allco� (2013), Schmeiser (2014), Train (2015) and Houde (2018). Un-
der this framework, consumers make purchase decision based on imperfect perceptions about
product a�ributes, and then a�er making the purchase choice, ex-post utility depends on ac-
tual product a�ributes. In our se�ing, drivers are imperfectly informed about stations’ prices
when they choose a refueling station, but then they must pay the current posted price when
they arrive at their chosen station. �us, be�er information about current prices can increase

20It is plausible that individuals value time savings di�erently across transportation modes, for example,
individuals may able to easily complete other tasks while waiting or while traveling in an ride share vehicle
relative to driving their own vehicle.

21For example, the Environmental Protection Agency uses a VOT of 33% of the wage (Cesario, 1976), and the
Department of Transportation use a VOT of 50% of the wage rate (Small et al., 2005; White, 2016).

22To calculate median wages, we �rst take the average of median census-tract incomes where the drivers live.
�en we follow the the U.S. DOT (White, 2016) and divide annual income by 2010 hours worked per year.
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ex-post utility through changing station choices, and therefore, the actual price paid for fuel.
To understand the calculation of consumer surplus when drivers have imperfect price

perceptions, consider a driver facing two choice scenarios s ∈ {0, 1}. �e two choice scenarios
can di�er due to the set of stations in the driver’s choice set and because the driver may have
di�erent perceptions about stations’ prices across the scenarios. In both scenarios, drivers
select a station based on perceived expenditure but ex-post utility is determined by the actual
expenditure. Let Pj be the actual expenditure to refuel at station j, but if s = 0, the driver
perceives the expenditure to refuel at station j as P 0∗

j and if s = 1, the driver perceives the
expenditure as P 1∗

j .23 Accordingly, the driver’s expected utility from choosing j and therefore
the probability of choosing j depends on the driver’s perception of expenditure. We denote
the perceived utility from choosing j in scenarios s as vs∗j and the probability of choosing
station j as πs∗j .

We calculate the change in expected consumer surplus for driver i on trip t between sce-
nario 1 and scenario 0 as follows:

∆CS =− 1

α

[
ln
(

1 +
( ∑
j∈C1

exp(
v1∗j
λ

)
)λ)− ln

(
1 +
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exp(
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λ

)
)λ)]

−
(∑
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π1∗
j (Pj − P 1∗

j )−
∑
k∈C0

π0∗
k (Pk − P 0∗

k )
)
. (6)

Where C0 and C1 are the choice sets for scenarios s = 0 and s = 1, respectively. �e �rst line
of Equation (6) is analogous to the standard formula for a change in consumer surplus for the
nested logit model (Small and Rosen, 1981), except that in this setup, these terms calculate the
change in drivers’ ex-ante perceived consumer surplus. �e terms on the second line adjust
consumer surplus to account for the possibility that the driver may end up paying prices that
di�er from their initial perceptions.

We apply Equation (6) to �nd the gain in consumer surplus from fully informing drivers
about current prices for each trip in our data. In particular, the �rst row of Table 4 shows the
change in consumer surplus if drivers became fully informed about current prices (i.e. P 1∗

j =Pj)
relative to the baseline case where drivers perceive prices as a weighted sum of current price
and long-run average price, with the weights determined by θ̂. For this �rst calculation, we
hold the choice set �xed as the set of previously passed stations. We �nd that drivers learning
current prices for previously passed stations would only slightly improve consumer surplus by
8.4¢ per refueling stop (1.1¢ per gallon purchased). In the second row of Table 4, we calculate
the change in consumer surplus from adding all gas stations within 20 minutes of drivers’
routes to their choice sets, relative to the baseline case where drivers only consider stopping
at stations that they have previously passed. For this calculation, we hold constant drivers’

23We assume that the actual prices at each station are held �xed across the two choice scenarios.
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imperfect perceptions of prices . We �nd that adding these stations to the choice set similarly
increases consumer welfare by 5.8¢ per stop (0.8¢ per gallon purchased). Finally, in the last of
row of Table 4 we estimate the gains from both informing drivers about all nearby stations and
about current prices at all these stations. In this case, the consumer welfare bene�ts remain
small in magnitude—14.5¢ per gas stop or 1.9¢ per gallon purchased.

Table 4: Value of Information

∆ Consumer Surplus vs. Baseline ($)
Per Gallon Per Stop

Current Prices Known, Choice Set = Passed Stations 0.011 0.084
Imperfect Price Info, Choice Set = All Stations 0.008 0.058
Current Prices Known, Choice Set = All Stations 0.019 0.145

Notes: Each cell shows the normalized change in consumer surplus (CS) from a change in drivers’ informa-
tion about current prices and/or nearby stations. We calculate the change in CS relative to the baseline case
where drivers only consider previously passed stations and are imperfectly informed about current prices.
In the baseline case, station price expectations are a function of θ̂. We �rst calculate the expected change in
CS for each trip in the data. We then sum the expected change in CS across all trips. Finally, in each column,
we divide the aggregate change in CS by the total gallons purchased, and total stops, respectively.

Why do consumers bene�t so li�le from be�er information? Our model estimates indi-
cate that drivers place a high value on their time, which means they strongly prefer to avoid
traveling far from their routes to refuel. Figure 2 shows that on an average trip, drivers could
save roughly $0.64 ($0.08/gal. × 8 gallons purchased) by �nding the cheapest station within
two minutes of their route relative to stopping at a random station directly along their route.
However, if the cheap station is located two minutes away from the route, the time cost asso-
ciated with visiting the cheapest station would be $0.92 ($27.54/hour × 2

60
hours). �us, most

drivers are unlikely to make substantially di�erent station choices when they learn more about
new stations or about current prices. Figure A.7 in the Appendix also provides additional in-
tuition about the important channels that contribute to our value of information estimates.
More speci�cally, we plot the change in consumer surplus from adding incremental stations
to drivers’ choice sets relative to the baseline. Drivers’ baseline choice sets include an aver-
age of 37 previously passed stations that lie within 20 minutes of their optimal route. In the
�gure, we plot how consumer surplus per gas stop changes as we sequentially add unpassed
stations into the choice sets, starting with stations that are nearest to drivers’ routes in terms
of excess time. �e �gure con�rms that drivers bene�t the most from learning current prices
at stations very close to their route, which allows them to reduce fuel expenditures without
signi�cantly increasing travel time. Whereas, the marginal value of considering additional
stations sharply decreases for stations further away from the route.

Noteably, our value of information results rest on the assumption that stations do not
update their pricing decisions in the counterfactuals. �us, our calculation is perhaps more
appropriate for assessing the bene�ts of o�ering a single driver or a small set of drivers ad-
ditional information about prices or nearby stations. Luco (2019) shows that price disclosure
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can increase prices by facilitating collusion, which suggests that our estimates could yield an
upper-bound on the consumer welfare bene�ts of large-scale price disclosure policies.

In sum, our estimates suggest that consumers stand to bene�t relatively li�le from gov-
ernment pricing disclosure requirements or from informational websites like Gas Buddy. In
contrast, price disclosure can potentially harm consumers if that information is used to facil-
itate �rm collusion (Byrne and De Roos, 2019; Luco, 2019).

4.4 Heterogeneity, Sensitivity, and Robustness Analysis

�e disaggregate nature of our data allows us to further explore the heterogeneity in pref-
erences across di�erent types of drivers in our sample and across di�erent types of trips.
Appendix Table A.6 shows the results for speci�cations that allow both the expenditure coef-
�cient, α, and the weight on current prices, θ, to vary by age, gender, and census tract income.
Additionally, we allow for heterogeneity in price sensitivity across the time of trip (weekday
versus weekend).24

We �nd evidence of substantial heterogeneity in expenditure sensitivity across age groups.
Column (1) indicates that the oldest drivers (age 60-70)—who are presumably more likely to
be retired—are substantially more price sensitive relative to younger drivers. According to
Column (2), women appear to be more price sensitive than men. Column (3) allows price
sensitivity to vary across driver income groups and Column (4) allows for heterogeneity across
weekend versus weekday trips, but we do not �nd statistically signi�cant di�erences in price
sensitivity across income or trip time. �e demographic interactions with θ are noisy but
we �nd some evidence that women and older drivers are relatively less responsive to current
prices. In particular, we estimate that the weight that both women and drivers aged 60-70
place on current prices is not statistically distinguishable from zero.

For ease of interpretation, we also report the average marginal e�ects corresponding to
each of the demographic group indicators on the value of time in Appendix Table A.7. We
report the marginal e�ects for the model which includes all the demographic interactions
within a single speci�cation (Column (5)). �e interactions of the demographics with expen-
diture have less statistical power when we include all of them together in the same model but
the estimates remain suggestive of sizeable heterogeneity in the value of time across demo-
graphics. �e point estimates show that a driver being in the oldest age category (age 60-70)
is associated with a $11/hour (39%) reduction in the VOT. Similarly, women’s implied value
of time is $5/hour (18%) lower than men’s. In addition, we see that drivers from high-income
census tracts have a $17/hour (72%) higher VOT compared to drivers in middle-income census
tracts. In sum, the heterogeneity estimates—although statistically imprecise—are generally in
line with demographic VOT pa�erns that we would expect.

24For the “�ll quantity regressions” we �t a �exible function that interacts both tank level and tank level
squared with dummy variables for each of the demographic groups or trip types (e.g. weekend).
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Having established our baseline and heterogeneity analyses, we also perform a series of
robustness checks to support the validity of our VOT estimates. �ere are several potential
issues that could lead to biased estimates of the model parameters: (1) misspeci�cation of
drivers’ consideration sets, (2) misspeci�cation of drivers’ price expectations, and (3) corre-
lation between prices and the error term in utility. Accordingly, we estimate several sets of
alternative models to explore whether and how each of these issues might bias our estimates.

Our �rst set of sensitivity checks examines how changing our assumption about drivers’
choice sets a�ects our estimated value of time. Recall, that our speci�cation of price percep-
tions requires that drivers be informed about either current price or long-run average price
for each station in their choice set. To increase the plausibility of this assumption, we only
include stations that drivers have previously passed in the choice set under our preferred
speci�cation. However, it is plausible that drivers may be unaware of both long-run average
prices and current prices at stations they have passed previously.

Appendix Table A.8 explores how altering the sample or reformulating the choice set
changes the parameter estimates and the VOT. In the second and third column, we continue to
assume the choice set includes only previously passed stations within 20 minutes of the route,
but we further restrict the estimation sample to include only trips that originated nearby the
drivers’ homes. �e motivation for these speci�cations is that drivers may be be�er informed
about station prices in areas where they drive frequently. We �nd that restricting the sample
to trips within ten or �ve miles of home imply a value of time of $23.98/hour and $28.40/hour—
both which are very similar to—and not statistically di�erent from—our baseline estimate of
$27.54/hour. In the fourth and ��h column, we restrict the choice sets to include only stations
that the driver has passed within the past 14 days and past seven days respectively. Again, we
obtain very similar estimates of the VOT—$26.47 and $23.53, respectively. �ese robustness
checks provide evidence that altering our assumption about driver’s station information (i.e.
choice set) does not substantially impact our value of time estimates.

Next, in Appendix Table A.9 we test the sensitivity of our estimates to alternate formula-
tions of drivers’ price perceptions. Our estimates of the expenditure coe�cient will also be
biased if we mis-specify drivers’ perceptions about station prices. In our base model, we as-
sume that drivers’ price perceptions can be expressed as a function of a station’s current price
and a station’s long-run average price. However, it is reasonable to believe that drivers may
use di�erent information to form price perceptions. Notably, drivers could incorporate recent
prices posted by a station in forming price expectations. �e second column in Table A.9, we
allow the price perception to be a function of the price posted the last time the driver passed a
station, as well as the current price. In Columns (3, 4, and 5) we allow price perceptions to be
a function of current price p and p, where p is de�ned as the mean price at the station over the
current month, current quarter, and current half-year, respectively. We �nd that estimates
are somewhat sensitive to the selected variable that enters expectations. More speci�cally,
we �nd that the speci�cations that include only more recent price information, such as price
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most recently passed and mean price over the current month, imply higher values of time be-
tween $71 and $60 per hour. �e speci�cations where perceptions are function of the station’s
quarterly mean price or semi-annual mean price imply VOTs of $38-41 per hour, closer to our
baseline estimate. Despite the sensitivity of the value of time estimates across the candidate
variables entering the price perception function, a clear pa�ern emerges. Namely, we see that
allowing for longer-run price information in the expectation function implies lower values of
time. �us, our baseline model provides a relatively conservative estimate of the value of time.
Moreover, by comparing the likelihood function across these alternative models, we see that
our baseline model, which includes current and long-run average price (over the full sample),
provides the best �t to the data.25

Finally, Appendix Table A.10 illustrates the robustness of our estimates to adding more
station-level control variables in the utility function. An important factor that may in�uence
station choices and also be correlated with station prices is the stations’ locations. Our base-
line speci�cation includes information about the relative distance to reach each station from
the driver’s route. However, drivers may also prefer to stop in certain types of neighborhoods
even a�er conditioning on excess time to reach each station. Accordingly, we collect data
on stations’ neighborhood characteristics at the census-tract level from the 2010 American
Community Survey. More speci�cally, we add controls for census tract median income and
the population density where each station is located. �e point estimates in Table A.10 sug-
gest that drivers may slightly prefer stations located in higher income and lower population
density areas, although the coe�cient estimate census-tract income is not statistically signif-
icant. Moreover, we see that our value of time estimates do not change much a�er adding
these neighborhood controls ($27.28-$27.30 per hour) and are not statistically distinguishable
from our baseline estimate.

5 Implications for Transportation Electri�cation

Currently, the vast majority of on-road vehicles are powered by burning fossil fuels such
as gasoline and diesel. Transitioning away from gasoline and diesel towards EVs o�ers a
promising way to reduce greenhouse gas emissions, so long as the electricity used to charge
these vehicles comes from low-carbon sources. However, such a transition would entail large
changes to when, where, and how drivers refuel. �us, the welfare impacts of transportation
electri�cation will depend in part on the value of time and also whether drivers lose or save
time as result of switching to an EV. Our estimates of driver preference and the VOT can
help elucidate the relationship between refueling infrastructure and EV adoption. Namely,
our empirical results show drivers’ VOT is roughly equal to the average wage rate, which is

25We also tried speci�cations that allowed the price perception function to depend on more than two vari-
ables, but we found that these speci�cations either had extremely large standard errors or did not converge due
to the high degree of correlation of station-level prices over time.
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markedly higher than the standard VOT used in U.S. policy-making of 33-50% of the wage rate.
In this section, we discuss the implications of our refueling preference and VOT estimates in
the context of transportation electri�cation.

5.1 Drivers with Home Charging

For many households, purchasing an EV can provide added convenience by allowing drivers
to refuel at home instead of traveling to fueling stations. In particular, drivers with access to
a garage or carport with electric charging can plug in their EV when they arrive at home and
charge the vehicle overnight. By allowing drivers to charge at home, EVs e�ectively reduce
the time cost that drivers spend visiting fueling stations in a gasoline-powered car.

We use our VOT estimates along with our data on driver refueling behavior to calculate
the gains from avoiding travel to gasoline stations over the lifetime of an EV. In particular, we
calculate the total time savings from home charging relative to gasoline refueling as follows:

Value of Time Saved =
25∑
t=0

1

(1 + r)t
×Mt ×

Gas Stops
Mile × Excess Time

Gas Stop × VOT

(7)

where r is the annual discount rate, which we assume to be 0.05, and Mt is the survival-
weighted mileage driven in year t of the vehicle’s life given by Lu (2006). We calculate this
value of time saved separately for cars and light trucks following Lu (2006) and then assume a
70% market share of light trucks following the April 2019 NADA “Market Beat.”26 We calculate
both the number of gasoline stops per mile drive from our data. We calculate the refueling
time per gasoline stop as the average excess time per stop in our data (1.78 minutes) plus
the waiting time required to pump the purchased gasoline assuming a gas pump rate of 10
gallons per minute (0.76 minutes).27 Applying our preferred value of time estimate of $27.54
per hour implies that drivers would value refueling at home at $829 over the lifespan of an
EV. �e majority of the value, $581, comes from avoiding driving time to gas stations and the
remaining $248 derives from avoiding waiting time at the gas pump.

�is calculation highlights an important bene�t of switching to an EV for drivers that
have access to home charging. However there are several important caveats to take into
account when interpreting the results. First, our calculation abstracts away any bene�ts that
consumers may obtain from visiting gas station convenience stores. Second, our calculation
does not account for potential welfare consequences of having to recharge an EV on longer
road trips. Finally, the baseline time savings estimate masks substantial heterogeneity in the

26h�ps://blog.nada.org/2021/05/05/nada-market-beat-new-light-vehicle-sales-top-18-million-unit-saar-
for-second-straight-month/

27�e EPA regulation require that gasoline pumps cannot operate at a rate above 10 gallons per minute.
We chose not use the observed time that the drivers spend at the gas station to avoid restroom breaks and
convenience store visits as refueling time.
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potential time savings across drivers. Importantly, aggregate time savings will depend on how
much each individual drives and refuels their vehicle. For example, we observe some drivers
who stop for gasoline upwards of �ve times per week which would imply aggregate time-
savings of over $2,500 over the lifespan of an EV. Similarly, our estimates of the heterogeneity
in drivers’ value of time suggest that working-aged drivers or high-income drivers may obtain
more value from charging at home than others.

5.2 Drivers without Home Charging

While drivers with the ability to charge at home could generally save on refueling time by
adopting EVs, there are many drivers who do not have a dedicated space for home charging
(Traut et al., 2013). Drivers without home charging capability will need to travel to shared
charging station infrastructure to refuel. �erefore, the time cost associated with refueling an
EV for these drivers will depend on both the density of charging network (e.g. the number
of charging stations) and the speed of the charging technology. Concerns over the ability
of drivers to charge away from home have lead to substantial policy interest in expanding
public charging infrastructure. For example, President Biden’s Infrastructure, Investment, and
Jobs Act includes funding for 500,000 charging stations nationwide.

In this section, we use our estimates of drivers preferences to be�er understand four im-
portant questions relevant to public EV charging infrastructure investment. First, given the
current EV charging network, how much more time would drivers spend refueling an EV rel-
ative to a gasoline vehicle? Second, how has this refueling time di�erential changed with the
expansion of the EV charging network from 2011-2021? And third, how large are the time-
saving bene�ts to drivers from investments in the public charging network? In particular,
we assess the marginal value of increasing the speed of charging stations (e.g. investing in
more DC fast chargers) relative to the marginal value of increasing the number of available
charging stations (which likely charge at lower speeds).

To answer these questions, we combine our geospatial data on drivers’ trips with data from
the U.S. Department of Energy (DOE) Alternative Fuels Data Center that reports the locations
and entry dates of U.S. EV charging stations. Public charging has expanded substantially in
the last decade, Table 5 shows that the number of charging stations in Michigan and Ohio
expanded over 30-fold from 46 stations in 2011 to 1,601 stations in 2021. Moreover, the share
of DC faster chargers in the network increased from 1% to 17%. But despite this expansion,
there remains far fewer EV charging stations compared to gas stations. Appendix Table A.11
compares the number of gas stations to the number of electric charging stations that are
located near drivers’ routes in our data. On an average trip in our data there were 37.17 gas
stations (23.41 previously passed stations) within �ve minutes of drivers’ optimal routes but
only 4.75 EV charging stations. Moreover, on a typical trip, a driver could stop for gas within a
one minute deviation of their route but the closest EV charger was located over four minutes
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Table 5: Excess Refuel Time as Function of Station Density and Charge Speed

# of
Stations

Fast Charger
Share [0, 1]

Mean Charger
Speed (kW)

Excess Time
(minutes)

Excess Time
Elasticity
w.r.t. # of
Stations

Excess Time
Elasticity

w.r.t. Charger
Speed

2011 46 0.01 17.81 121.64 -0.38 -0.69
2016 326 0.06 21.98 51.42 -0.23 -0.61
2021 1601 0.17 29.02 30.63 -0.11 -0.52

Notes: �e �rst column shows the number of total EV charging stations located in Michigan or Ohio for
each year as determined by each station’s entry year in the DOE data. �e second column shows the share
of stations that o�er DC fast charging by year, if a station o�ers both DC fast chargers and AC chargers,
we code that station based on its share of fast chargers (e.g. 0.5 if half the chargers at the station are
fast chargers). �e third column calculates the mean estimated charging speed across all stations in the
network. �e fourth column shows our estimate of excess time per refueling stop based on that year’s
network con�guration. �e last two columns show the the elasticity of excess time with respect to changing
the number of stations and charger speed, respectively.

Beyond understanding the distribution of charging station locations relative to drivers
routes, we use our refueling choice model to predict when and where drivers would choose to
refuel an EV and to measure the time costs of refueling an EV compared a gasoline vehicle. In
particular, we reconstruct each driver’s refueling choice set for each trip with the locations of
EV charging stations within a 20-minute (driving) deviation from the driver’s optimal route.
When making their EV refueling decision, we allow drivers to either (1) drive to the charging
station and wait for their vehicle to recharge or (2) park their vehicle at the charging station
and walk to their destination, assuming that drivers’ walking speed is 3 miles per hour. For
example, a driver that spends several hours at work could park and charge their EV at a
nearby station and walk from the station to work. For each station, we assume that drivers
would choose to “walk” or “wait” to minimize the additional time spent refueling. Having
speci�ed the excess time to refuel at each charging station, we use our refueling choice model
to predict drivers’ EV refueling choices under di�erent assumptions about both the speed of
EV changing technology and the density of the EV charging network. We provide more details
on the EV refueling excess time calculations in Appendix C.1.

We make several assumptions to simplify the counterfactual exercise. Firstly, we assume
that all the EV stations have the same prices, charging speed, and brand quality,29 and are
accessible to all vehicles. In our baseline counterfactuals, we further assume that electric
vehicles have the same fuel economy and range as the 2010 Honda Accord that drivers used
in the IVBSS experiment and that the estimated relationship between “tank level” and value

28�e distribution of the time to the closest electric charging station is right skewed because some trips are
located very far from charging stations.

29Our estimated utility function includes station brand e�ects. For the counterfactuals, we omit these �xed
e�ects and solve for a new intercept in the utility function associated with stopping to refuel such that the number
of predicted EV refueling stops in the counterfactual equals the number of gasoline refueling stops observed in
the data. See Appendix Section C.2 for more details.
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of stopping to refuel is held �xed. Finally, we assume that drivers would not change their
travel routes or schedules if they were to switch to an EV.

Table 6: Refueling Times by Technology Type

Excess Time Per Refuel

Type Fill Rate

Technological
Fill Time

(Min.)
Total
(Min.)

Drive
(Min.)

Walk
(Min.)

Wait
(Min.)

Walk
Share
[0, 1]

Time
Cost Per
Stop ($)

Total
Time

Cost ($)

Gas
Pump 10 Gal./Min. 0.77 2.54 1.78 0.00 0.76 0.00 1.17 829

Electric
Average Charger Speed (2021) 29 kW 528.99 30.63 -0.12 30.10 0.64 1.00 14.06 9169
Tesla DC Supercharger 250 kW 61.36 18.26 -0.04 16.91 1.40 1.00 8.38 5131

Notes: For the “Gas Pump” technology type, we assume drivers consider only previously passed gasoline stations.
For the ”Electric” types, we assume that drivers consider all electric charging stations in the DOE database and
that all the stations feature same charging technology and uniform prices. Waiting time for gas stations are
based on an EPA rule that limits gas pumping speed to 10 gallons per minute. �e technological �ll time column
indicates the amount of minutes needed to refuel based on the average refueling quantity in our estimation
sample (7.65 gallons, equivalent to 255.59 KW). �e excess time columns indicate the average amount of added
time to refuel based on the station locations, refueling technology, and the driver preference estimates. �e walk
share column indicates that the fraction of refueling stops where it is time-minimizing for drivers to park at the
charging station and then walk to their �nal destination. �e average time cost per stop is calculated based on
the baseline VOT estimate from the previous section. �e total time cost is the the discounted expected time cost
aggregated over the lifetime of a vehicle.

We discuss the implications and validity of the �rst two assumptions in Appendix C.3.
While these assumptions may seem relatively strong, we are able to assess the sensitivity
of our results to changes in these assumptions, which we discuss further below. �e last
assumption, that drivers would not change their routes excludes the possibility that driver
re-optimize their driving trips to be�er accommodate EV charging. For example, a driver
might choose to visit a di�erent grocery store or cafe that has an EV charger nearby. �is last
assumption is di�cult to relax without fully specifying a model of drivers’ destination choices,
which is outside the scope of this paper. �erefore, our EV refueling time cost estimates should
be interpreted cautiously, with the caveat that drivers cannot change their trip destinations
in the counterfactuals.

Our model suggests that EV drivers without home charging spend substantially more time
on refueling than gasoline vehicle drivers. As shown in Table 6, in 2021, the average charging
stop adds 30.6 excess minutes of driving, walking, and/or waiting time relative to only 2.5
excess minutes for a gasoline stop. Over the course of a vehicle’s lifetime, our VOT estimates
imply that excess refueling time costs for EVs are $9,169 compared to $829 for gas vehicles. �e
high time cost of EV refueling is driven by the slow speed of EV chargers. We estimate that the
average charger speed in 2021 was 29 kW,30 which means that it would take over 500 minutes
to recharge 256 kWh of electricity (equivalent to 7.65 gallons of gasoline). Consequently, Table

30DOE does not report the exact speed of each charger so we calculate the average charging speed of each
station under the assumption that chargers classi�ed as Type 1, Type 2, or Type 3 (DC Fast) o�er speeds of 1.92
kW, 19 kW, and 80 kW, respectively (SAE, 2017).
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6 shows that drivers would typically spend nearly all of the 30.6 excess refueling minutes
walking round-trip from the charging station to their destination.31

Although EV refueling time costs are still large compared gasoline, Table 5 shows that
excess refueling times for EVs fell substantially in the decade between 2011 and 2021. Over
that period, excess refueling time fell by nearly 75%, from 121.6 minutes to 30.6 minutes per
refueling stop, due to the growing number of stations and the availability of fast chargers.
�e bo�om row of Table 6 highlights the value of charging speed in reducing excess refueling
time. If all electric chargers in 2021 were Tesla DC Superchargers (250 kW) rather than the
observed average charging speed of 29 kW, drivers’ excess time per stop would nearly halve to
18.2 minutes from 30.6 minutes. However, DC fast chargers are substantially more expensive
than slower chargers: a 250 kW DC supercharger would cost approximately 10 times as much
as a 25 KW charger (Nicholas, 2019). �is raises an important policy question of whether
investing in additional charging stations is more valuable than investing in increased charging
station speed (with fewer stations).

We cast the charging network investment problem through the lens of a social planner
who seeks a charging network that minimizes the refueling time cost of a representative
driver subject to a budget constraint.32 Namely, the planner chooses the optimal (second-
best) combination of charging speed and number of stations.33 �e �rst order conditions of
planner’s problem—which we include in Appendix C.4—reveal an intuitive condition for op-
timality, the elasticity of excess refueling time with respect to the number of stations must
equal the elasticity of excess refueling time ould with respect to charging speed.

To determine the relevant elasticities for the planners’ investment problem, we solve our
EV refueling choice model separately across a grid of combinations of station density (as
observed between 2011 and 2021) and currently technologically feasible charging speeds (from
20 KW to 260 kW).34 Figure 4 displays contour lines of excess refueling time per stop as well
as the observed combinations of station density and charging speed over time (blue line). �e
�gure makes clear that investment in electric charging stations has predominantly been to
increase the number of charging stations rather than charging speed.

�e �rst order conditions of the social planner’s optimization indicate that the elasticity
of excess refueling time with respect to charging speed should be set equal to the excess time

31If the value of time spent walking is di�erent from the value of time spent driving to refuel, then this would
change the valuation of this excess time.

32Casting the planner’s problem with respect to a single representative driver increases the tractability of
the problem, but abstracts away from explicitly modelling charging capacity constraints. Ignoring capacity con-
straints is perhaps more reasonable in this context because the choice between fewer fast chargers and a higher
quantity of slow chargers will not necessarily alter the total charging capacity of the network. For example, one
100 kW fast charger could charger 10 vehicles back-to-back and achieve the same result as ten vehicles charging
simultaneously at ten separate 10 kW AC chargers.

33We do not argue that this optimization is welfare maximizing, but rather that it is the most e�cient way to
spend a pre-speci�ed charging infrastructure budget. Given that electric vehicle adoption depends on charging
cost and vice-versa, the socially optimal level of charging station investment is a substantially more di�cult
question. See Greaker and Heggedal (2010) and Li et al. (2016) for a more in-depth discussion of these issues.

34See Appendix C.5 for more details.

33



Figure 4: Excess Refuel Time Contour Map as a Function of Station Density and Charger Speed

Notes: �e thin grey lines show contours representing the estimated excess refueling time per EV refueling stop
across di�erent counterfactual combinations of station density (number of stations) and charging speed of the
network (kW). �e excess refueling time for each counterfactual network con�guration is determined by the
location of charging stations relative to drivers routes and behavioral assumptions that are described in Section
4. �e lower blue line plots the evolution of the observed EV charging network density and speed from 2011 to
2021. �e red line shows combination of charger density and speed that would minimize drivers’ excess refueling
time, while holding the total capital cost of the network �xed.

elasticity with respect to the number of stations. �e red line in Figure 4 shows that the social
planner’s solution would be to invest in substantially fewer, but faster, chargers than was
observed in the data. By 2021, the planner could have decreased EV refueling time costs by
an additional 17% (30.6 minutes to 25.47 minutes per stop) by investing in faster chargers but
fewer total stations than the observed network con�guration.

We �nd that the marginal value of faster charging speeds has exceeded the marginal value
of additional stations consistently over the past decade. Table A.11 illustrates that in 2011, the
excess time elasticity with respect to the number of stations was -0.38, whereas the elas-
ticity with respect to charging speed was -0.69. �is suggests that the return to additional
investment in charging speed was 1.76 times larger (-0.71/-0.39) greater than the return to
investment in a proportional increase in the number of stations. By 2021, the time-savings
from higher charging speed grew to be 4.72 times (-0.52/-0.11) greater than the time-savings
from a proportional increase in the number of stations.

Overall, this combination of results shows that the marginal value of charging speed is sub-
stantially higher than the marginal value of charging station density, and that this disparity
has been increasing over time. Hence, the counterfactuals suggest that policies that priori-
tize investments in faster chargers as opposed to additional chargers (with slower charging
speeds), may deliver larger bene�ts to EV drivers.

Notably, the EV refueling results in this section rely on a number of strong assumptions.
Appendix C.6 presents a collection of sensitivity checks. More speci�cally, we consider the
implications of varying the assumed frequency that drivers would recharge their EV and al-
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tering how EV drivers’ value waiting time relative to walking time. �ese sensitivity checks
demonstrate that our excess refueling time estimates are somewhat sensitive to some of the
underlying assumptions. For example, the estimated refueling times substantially increase
from our baseline if drivers were to increase the frequency that they refuel their EVs. On
the other hand, the sensitivity checks also show that the major takeaway that the marginal
value of charging speed exceeds the marginal value of additional stations, remains unchanged
under di�erent assumptions about drivers’ behavior and preferences.

6 Conclusion

While the economics literature has made substantial strides in understanding the supply and
demand for gasoline, our ability to understand drivers’ refueling choices has been limited
by the lack of micro data on driver behavior. Understanding drivers’ preferences—including
their valuation of travel time—is important for both the retail gasoline market itself and for
transportation policy more broadly. In particular, policies aiming to electrify the transporta-
tion sector will require a detailed understanding of the trade-o�s drivers face when making
refueling decisions.

In this paper, we use high frequency GPS driving data to be�er understand drivers’ be-
havior and preferences for refueling. We leverage these unique data to document new facts
about drivers’ refueling choices–such as the distance driven out of the way to refuel. More-
over, we develop a model of refueling choice to recover estimates of drivers’ preferences. We
show that drivers rely substantially on long-run average prices when forming expectations of
the prices they will pay at each station and that drivers have a high value of time. �is high
value of time suggests that current Department of Transportation bene�t-cost analyses may
under-value the bene�ts of time-saving transportation policies, and that policies mandating
station price disclosure may have limited welfare bene�ts to drivers.

Drivers’ high value of time has particularly important implications for EV policies. We use
our model to measure the refueling costs and bene�ts drivers would receive if they drove EVs
instead of gasoline vehicles. We �nd that drivers who charge at home bene�t from reduced
refueling time, while drivers who rely upon the public charging network face substantial
additional costs. Drivers with home charging are generally wealthier, suggesting that policies
to improve public charging infrastructure could make EV adoption a�ractive to a wider range
of drivers. Finally, our results demonstrate that policies that prioritize faster charging stations
over increased station density will generate larger decreases in refueling times for drivers who
rely on public charging.

�is paper contributes to the literature by providing direct evidence on drivers’ on-road
refueling decisions, but there is substantial room for future research to extend and potentially
validate our results. In particular, our data come from a relatively small sample of drivers, and
further analysis with a larger or more nationally representative sample would be valuable.
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Additionally, as EVs become increasingly common, it will be important for researchers to
empirically document drivers’ choices when making charging decisions.

Beyond driver preferences, designing e�ective EV policy will require a more detailed un-
derstanding of the incentives facing EV charging stations. �e EV charging market has thus
far developed di�erently from the gasoline station market, with large networks of chargers
posting �xed prices. Understanding why these di�erences have arisen and what they imply
for the role of policy will be critical for encouraging widespread EV adoption.
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De los Santos, B., Hortaçsu, A., and Wildenbeest, M. R. (2012). Testing models of consumer
search using data on web browsing and purchasing behavior. American Economic Review,
102(6):2955–80.

Deacon, R. T. and Sonstelie, J. (1985). Rationing by waiting and the value of time: Results from
a natural experiment. Journal of Political Economy, 93(4):627–647.

DOE (2022). Department of energy alternative fuels data center. h�ps://afdc.energy.gov, note
= Online; accessed 26 January 2022.

Ge, Y., Simeone, C., Duvall, A., and Wood, E. (2021). �ere’s no place like home: Residential
parking, electrical access, and implications for the future of electric vehicle charging infras-
tructure. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United
States).

Goeree, M. S. (2008). Limited Information and Advertising in the U.S. Personal Computer
Industry. Econometrica, 76(5):1017–1074.

Goldszmidt, A., List, J. A., Metcalfe, R. D., Muir, I., Smith, V. K., and Wang, J. (2020). �e
Value of Time in the United States: Estimates from Nationwide Natural Field Experiments.
Technical report, National Bureau of Economic Research.

Greaker, M. and Heggedal, T.-R. (2010). Lock-In and the Transition to Hydrogen Cars: Should
Governments Intervene? �e B.E. Journal of Economic Analysis & Policy, 10(1).

Hastings, J. S. and Shapiro, J. M. (2013). Fungibility and consumer choice: Evidence from
commodity price shocks. �e�arterly Journal of Economics, 128(4):1449–1498.

Hotz, V. J. and Miller, R. A. (1993). Conditional choice probabilities and the estimation of
dynamic models. �e Review of Economic Studies, 60(3):497–529.

Houde, J.-F. (2012). Spatial Di�erentiation and Vertical Mergers in Retail Markets for Gasoline.
American Economic Review, 102(5):2147–2182.

Houde, S. (2018). How consumers respond to product certi�cation and the value of energy
information. �e RAND Journal of Economics, 49(2):453–477.

Hughes, J. E., Kni�el, C. R., and Sperling, D. (2006). Evidence of a Shi� in the Short-Run Price
Elasticity of Gasoline Demand. �e Energy Journal, 29(1):93–114.

Ito, K. (2014). Do consumers respond to marginal or average price? evidence from nonlinear
electricity pricing. American Economic Review, 104(2):537–63.

Ito, K. and Sallee, J. M. (2018). �e economics of a�ribute-based regulation: �eory and evi-
dence from fuel economy standards. Review of Economics and Statistics, 100(2):319–336.

38

https://afdc.energy.gov


Kni�el, C. R. and Tanaka, S. (2021). Fuel economy and the price of gasoline: Evidence from
fueling-level micro data. Journal of Public Economics, 202:104496.

Lave, C. A. (1969). A behavioral approach to modal split forecasting. Transportation Re-
search/UK/, 3(4).

Legge�, C. G. (2002). Environmental valuation with imperfect information the case of the
random utility model. Environmental and Resource Economics, 23(3):343–355.

Levin, L., Lewis, M. S., and Wolak, F. A. (2017). High frequency evidence on the demand for
gasoline. American Economic Journal: Economic Policy, 9(3):314–47.

Levin, L., Lewis, M. S., and Wolak, F. A. (2019). Reference dependence in demand for gasoline.

Lewis, M. S. (2011). Asymmetric Price Adjustment and Consumer Search: An Examination of
the Retail Gasoline Market. Journal of Economics and Management Strategy, 20(2):409–449.

Lewis, M. S. and Marvel, H. P. (2011). When Do Consumers Search? �e Journal of Industrial
Economics, LIX(3):457–483.

Lewis, M. S. and Noel, M. D. (2011). �e Speed of Gasoline Price Response in Markets with
and without Edgeworth Cycles. Review of Economics and Statistics, 93(May):672–682.

Li, J. (2017). Compatibility and investment in the U.S. electric vehicle market. Technical report.

Li, S., Lang, T., Xing, J., and Zhou, Y. (2016). �e Market for Electric Vehicles: Indirect Net-
work E�ects and Policy Design. Journal of the Association of Environmental and Resource
Economists, 4(1):89–133.

Li, Jing (2017). Compatibility and Investment in the U.S. Electric Vehicle Market.

Liebman, J. B. and Zeckhauser, R. J. (2004). Schmeduling. Technical report.

Lu, S. (2006). Vehicle survivability and travel mileage schedules. Technical report.

Luco, F. (2019). Who bene�ts from information disclosure? �e case of retail gasoline. Amer-
ican Economic Journal: Microeconomics, 11(2):277–305.

Luxen, D. and Ve�er, C. (2011). Real-time routing with openstreetmap data. In Proceedings of
the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS ’11, pages 513–516, New York, NY, USA. ACM.

Nicholas, M. (2019). Estimating electric vehicle charging infrastructure costs across
major us metropolitan areas. URL: h�ps://theicct. org/sites/default/�les/publication-
s/ICCT EV Charging Cost 20190813. pdf.

39



Oort, C. J. (1969). �e evaluation of travelling time. Journal of Transport Economics and Policy,
pages 279–286.

Pennerstorfer, D., Schmidt-Dengler, P., Schutz, N., Weiss, C., and Yontcheva, B. (2020). In-
formation and price dispersion: �eory and evidence. International Economic Review,
61(2):871–899.

SAE (2017). Society of Automotive Engineers Electric Vehicle and Plug in Hybrid Electric Vehicle
Conductive Charge Coupler.

Schmeiser, S. (2014). Consumer inference and the regulation of consumer information. Inter-
national Journal of Industrial Organization, 37:192–200.

Small, K. A. and Rosen, H. S. (1981). Applied welfare economics with discrete choice models.
Econometrica: Journal of the Econometric Society, pages 105–130.

Small, K. A., Winston, C., and Yan, J. (2005). Uncovering the distribution of motorists’ prefer-
ences for travel time and reliability. Econometrica, 73(4):1367–1382.

Springel, K. (2016). Network externality and subsidy structure in two-sided markets: Evidence
from electric vehicle incentives. Job Market Paper, 2016.

Teisberg, T. J. (1981). A dynamic programming model of the us strategic petroleum reserve.
�e Bell Journal of Economics, pages 526–546.

Train, K. (2015). Welfare calculations in discrete choice models when anticipated and experi-
enced a�ributes di�er: A guide with examples. Journal of Choice Modelling, 16:15–22.

Traut, E. J., Cherng, T. C., Hendrickson, C., and Michalek, J. J. (2013). U.S. residential charging
potential for electric vehicles. Transportation Research Part D: Transport and Environment,
25:139–145.

U.S. Bureau of Labor Statistics (2020). Consumer Expenditure Survey. Technical report, U.S.
Bureau of Labor Statistics.

White, V. (2016). Revised departmental guidance on valuation of travel time in eco-
nomic analysis. O�ce of the Secretary of Transportation, US Department of Trans-
portation, Available at: transportation.gov/sites/dot. gov/�les/docs/2016%20Revised%20Value%
20of%20Travel%20Time%20Guidance. pdf.

Wol�, H. (2014). Value of time: Speeding behavior and gasoline prices. Journal of Environ-
mental Economics and Management, 67(1):71–88.

Yang, H. and Ye, L. (2008). Search with Learning: Understanding Asymmetric Price Adjust-
ments. �e RAND Journal of Economics, 39(2):547–564.

40



Online Appendix

A Additional Tables & Figures Referenced in Main Paper

Table A.1: Driver Summary Statistics

Mean SD Min Max
Driver Census Tract Median Income ($) 64,275.44 26,074.66 19,710.00 146,250.00
Days With Vehicle 39.83 4.18 32.00 73.00
Total Driving Distance (Miles) 1,768.48 862.34 520.98 4,585.83
Miles Per Day 50.03 22.34 13.45 127.38
Total Driving Trips 204.76 90.33 37.00 597.00
Total Number of Refueling Stops 8.01 5.49 0.00 32.00
Refueling Stops Per Week 1.57 0.99 0.00 6.22
Observations 108

Notes: Panel A summarizes information about the drivers including their driving behavior during the IVBSS
experiment. �e drivers were 50% male and 50% female. �e drivers were approximately evenly distributed
across three age groups: 20-30 years old, 40-50 years old, and 60-70 years old.

Table A.2: Summary of Vehicle Trips

Mean SD Pct25 Median Pct75
Trip Distance (miles) 8.27 16.45 1.04 3.50 9.00
Trip Time (minutes) 13.48 20.35 3.11 7.98 16.69
Distance from Trip Origin to Home (miles) 9.48 25.73 0.09 2.53 8.57
Weekend (0,1) 0.26 0.44 0.00 0.00 1.00
Refueling Stop (0,1) 0.04 0.19 0.00 0.00 0.00
Tank Level at Start of Trip (gallons) 6.87 4.21 3.74 6.55 9.77
Number of Gas Stations Available Nearby Optimal Route
Within 1 minute(s) 5.89 6.47 2.00 4.00 7.00
Within 5 minute(s) 24.45 36.07 5.00 12.00 27.00
Within 20 minute(s) 120.45 149.08 36.00 71.00 142.00
Observations 22114
Notes: Summary statistics are reported across all trips made by all drivers during the experiment. Pct25 and

Pct75 are the 25th and 75th percentiles, respectively.
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Figure A.1: Driver Income Distribution

Notes: Distribution of driver’s income based on the census tract in the 2010 American Community Survey.

Figure A.2: Procedure for identifying gas station stops

Notes: All vehicle stops within a 100-meter radius of gasoline station pumps were considered as possible refueling
stops (le� image). Images from the driver’s side camera were used to con�rm that the car was stopped at a gas
pump (right image).
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Figure A.3: Average gasoline price and observed purchase price through sample period

Notes: �e black line shows the daily average gasoline price in MI and OH from the OPIS data. Each small dot
represents the date and price associated with one of the refueling stops that we identify.

Table A.3: Station Brand Choice Probabilities

BP 19.7%
Citgo 5.0%
Costco 2.5%
Marathon 14.1%
Meijer 7.4%
Mobil 10.2%
Other 13.5%
Shell 6.4%
Speedway 14.8%
Sunoco 6.5%

Total 100.0%
Notes: Choice probabilities are shares

across all refueling stops made by all
drivers during the experiment.
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Figure A.4: Map of Observed Refueling Locations

Notes: �e orange points represent a refueling stop that we identi�ed using vehicle geolocations and the in-car
cameras.

Table A.4: Passed vs. Non-Passed Stations

Passed Non-Passed Di�erence
Mean SD Mean SD Di�. SE

Current Price ($/gallon) 2.620 0.140 2.589 0.165 -0.031*** (0.001)
Excess Time (min) 8.295 5.818 10.705 5.298 2.410*** (0.032)

Notes: �e table shows prices and excess time for all stations that were passed previously by
drivers compared to stations that were not passed previously by drivers. �e sample includes
all potential stations that are within 20 minutes deviation from a trip.
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Figure A.5: Probability of Stopping and Tank Level

Notes: Each dot in the binned sca�er plot show how the empirical probability of stopping to refuel changes as
function of fuel tank level measured at the start of the trip. �e dashed line shows a quadratic �t of the data.
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Figure A.6: Distribution of Total Fuel Expenditure

Notes: �e graphic shows a histogram of total fuel expenditure in dollars across all refueling stops in our sample.
Total expenditure is calculated as the current price ($ per gallon) at the driver’s selected station multiplied by
the implied �ll quantity (gallons) for the trip. Our procedure for recovering �ll quantities is described in the
appendix.
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Table A.5: Fill �antity Regression - Evidence for Exclusion of Prices

Fill �antity (gallons)
(1) (2) (3)

(Intercept) 8.854 11.75 1.755
(0.4268) (2.938) (9.665)

Tank Level -0.4226 -0.4314 -0.4111
(0.2148) (0.2150) (0.2157)

(Tank Level)2 -0.0125 -0.0122 -0.0137
(0.0275) (0.0275) (0.0275)

Current Price -1.104 -1.358
(1.110) (1.134)

Station’s Average Price 4.129
(3.805)

Observations 744 744 744
R2 0.10267 0.10389 0.10533
Station Brand Fixed E�ects Y Y Y
Choice Set Passed Passed Passed
Notes: �e dependent variable is the imputed �ll quantity associated

with each observed refueling stop. �e regressions estimates are used to
predict expected �ll quantity conditional on stopping for each trip condi-
tional on initial tank level (gallons). �e �rst regression is used to predict
expected �ll quantity for the baseline model (6) in Table 3. �e second
two speci�cations provide evidence for the exclusion restriction imposed
by Assumption 1. Neither current price nor station average price are sta-
tistically signi�cant predictors of �ll quantity a�er controlling for tank
level and station brand.
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Table A.6: Heterogeneous Preferences

(1) (2) (3) (4) (5)
Expenditure Coe�cients
α (constant) −0.246 −0.371 −0.588 −0.395 −0.384

(0.042) (0.040) (0.306) (0.041) (0.174)
× 1[Age 60-70] −0.552 −0.235

(0.080) (0.079)
× 1[Female] −0.125 −0.085

(0.054) (0.061)
× 1[Low Income (Q1) ] 0.293 0.030

(0.423) (0.144)
× 1[High Income (Q5) ] 0.260 0.175

(0.323) (0.145)
× 1[Weekend] −0.055 0.054

(0.058) (0.033)

Weight on Current Price
θ (constant) 0.177 0.241 0.104 0.176 0.187

(0.144) (0.062) (0.042) (0.064) (0.146)
× 1[Age 60-70] −0.084 −0.188

(0.150) (0.145)
× 1[Female] −0.197 −0.105

(0.084) (0.228)
× 1[Low Income (Q1) ] 0.111 0.106

(0.420) (0.190)
× 1[High Income (Q5) ] 0.386 0.350

(0.323) (0.348)
× 1[Weekend] −0.015 0.034

(0.111) (0.188)

Excess Time
γ −0.152 −0.162 −0.175 −0.159 −0.156

(0.013) (0.013) (0.038) (0.015) (0.116)

Nesting Parameter
λ 0.297 0.321 0.350 0.316 0.309

(0.024) (0.027) (0.086) (0.027) (0.141)
Number of Stops 744 744 744 744 744
Number of Trips 21355 21355 21355 21355 21355
Observations 815070 815070 815070 815070 815070
Choice Set Passed Passed Passed Passed Passed
Notes: Table reports psuedo maximum likelihood estimates of driver preferences.

Bootstrap standard errors are reported in parentheses. �e choice set for each speci-
�cation includes stations that the driver has previously passed before that are within
20 minutes of the route.

Table A.7: Average Marginal E�ects ($/Hour)

1[Age 60-70] 1[Female] 1[Low Income (Q1)] 1[High Income (Q5)] 1[Weekend]
-11.18 -5.23 2.14 17.09 3.91
(7.45) (6.54) (5.52) (8.24) (5.28)

Notes: Table reports the average marginal e�ect on the value of time. �e marginal e�ects corresponds to
the estimates in Column 5 of Table A.6. Standard errors are reported in parentheses.
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Table A.8: Driver Preference Estimates - Varying Speci�cation of Driver Choice Sets

(1) (2) (3) (4) (5)

Decision to Stop

1[Stop] × Constant 6.414 6.019 4.948 7.110 8.174
(1.193) (1.354) (1.472) (1.276) (1.371)

1[Stop] × Tank Level -0.453 -0.376 -0.367 -0.477 -0.534
(0.075) (0.084) (0.091) (0.077) (0.082)

1[Stop] × (Tank Level)2 -0.060 -0.066 -0.062 -0.063 -0.060
(0.007) (0.009) (0.010) (0.007) (0.007)

Station Choice

α - Expenditure -0.384 -0.411 -0.362 -0.414 -0.462
(0.053) (0.067) (0.074) (0.056) (0.061)

θ - Weight on Current Price 0.169 0.156 0.245 0.170 0.145
(0.068) (0.077) (0.101) (0.066) (0.060)

γ - Excess Time (minutes) -0.176 -0.164 -0.172 -0.183 -0.181
(0.017) (0.019) (0.022) (0.018) (0.018)

Nesting Parameter

λ 0.350 0.333 0.326 0.368 0.371
(0.033) (0.038) (0.042) (0.034) (0.035)

Station Brand Fixed E�ects Y Y Y Y Y
Number of Stops 744 549 441 723 692
Number of Trips 21355 17158 13960 21290 21125
Observations 815070 675126 527458 694467 553320

Choice Set
Passed
Ever

Home
≤ 10 mi.
& Passed

Home
≤ 5 mi.

& Passed
Passed
≤ 14 days

Passed
≤ 7 days

Implied Value of Time ($/hour)

27.54 23.98 28.40 26.47 23.53
(3.31) (3.28) (4.95) (3.19) (2.70)

Notes: Table reports pseudo maximum likelihood estimates of driver preferences. �e ex-
pected �ll quantities are predicted from the regressions in Table 2. Each column shows re-
sults varying our speci�cation of drivers’ choice set. Column (1) shows our base speci�cation
where all stations that the driver has previously passed that are within 20 minutes of the
route are included in the choice set. Column (2) and (3) also set the choice set to stations that
the driver has previously passed that are within 20 minutes, but further restrict the sample to
only trips that started within 10 miles and 5 miles of the driver’s home, respectively. Column
(4) and (5) restrict the choice sets to only stations within 20 minutes of the route and that the
driver has passed within the last 14 days or 7 days, respectively. Coe�cient standard errors
are reported in parentheses. �e implied value of time is calculated as 60 · γα and standard
errors are reported in parentheses.
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Table A.9: Driver Preference Estimates - Varying Speci�cation of P

(1) (2) (3) (4) (5)

Decision to Stop

1[Stop] × Constant 6.414 0.844 1.386 3.546 3.096
(1.193) (0.515) (0.600) (0.737) (0.730)

1[Stop] × Tank Level -0.453 -0.186 -0.212 -0.317 -0.287
(0.075) (0.054) (0.056) (0.060) (0.059)

1[Stop] × (Tank Level)2 -0.060 -0.052 -0.053 -0.056 -0.056
(0.007) (0.007) (0.007) (0.007) (0.007)

Station Choice

α - Expenditure -0.384 -0.141 -0.164 -0.258 -0.238
(0.053) (0.022) (0.026) (0.033) (0.032)

θ - Weight on Current Price 0.169 0.855 0.461 0.155 0.273
(0.068) (0.186) (0.251) (0.103) (0.108)

γ - Excess Time (minutes) -0.176 -0.168 -0.164 -0.163 -0.164
(0.017) (0.018) (0.018) (0.017) (0.017)

Nesting Parameter

λ 0.350 0.336 0.327 0.323 0.326
(0.033) (0.035) (0.035) (0.033) (0.034)

Station Brand Fixed E�ects Y Y Y Y Y
Number of Stops 744 744 744 744 744
Number of Trips 21355 21355 21355 21355 21355
Observations 815070 815070 815070 815070 815070
Choice Set Passed Passed Passed Passed Passed
P Full Sample Last Price Passed Month �arter Half-Year
Log Likelihood -4374.128 -4394.963 -4393.544 -4379.452 -4384.249

Implied Value of Time ($/hour)

27.54 71.64 60.27 37.84 41.20
(3.31) (12.29) (10.60) (5.07) (5.92)

Notes: Table reports pseudo maximum likelihood estimates of driver preferences. �e expected �ll quanti-
ties are predicted from the regressions in Table 2. Each column shows how estimates change if we specify
a di�erent measure of average price (P ) entering the drivers expectations. �e �rst column is our base
speci�cation that sets P as the station’s average price over the entire sample, column (2) sets P as the
price the last time the driver passed the station, columns (3-5) set P as the mean price at the station over
the current month, quarter, and half year, respectively. Choice Set = “All” indicates that all stations with
20 minutes of the driver’s route are included in the choice set. Choice Set = “Passed” means stations that
the driver has previously passed that are within 20 minutes of the route are included in the choice set.
Coe�cient standard errors are reported in parentheses. �e implied value of time is calculated as 60 · γα
and standard errors are reported in parentheses.
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Table A.10: Driver Preference Estimates - Station Neighborhood Controls

(1) (2) (3) (4)

Decision to Stop

1[Stop] × Constant 6.414 6.560 7.041 7.048
(1.193) (1.215) (1.271) (1.278)

1[Stop] × Tank Level -0.453 -0.461 -0.479 -0.480
(0.075) (0.076) (0.078) (0.078)

1[Stop] × (Tank Level)2 -0.060 -0.060 -0.061 -0.061
(0.007) (0.007) (0.007) (0.007)

Station Choice

α - Expenditure -0.384 -0.392 -0.410 -0.410
(0.053) (0.054) (0.056) (0.057)

θ - Weight on Current Price 0.169 0.166 0.162 0.161
(0.068) (0.067) (0.066) (0.066)

γ - Excess Time (minutes) -0.176 -0.178 -0.187 -0.187
(0.017) (0.017) (0.018) (0.018)

Station Census Tract Median Income 0.004 0.000
(0.008) (0.008)

Station Census Tract Population Density -0.035 -0.035
(0.014) (0.014)

Nesting Parameter

λ 0.350 0.354 0.372 0.372
(0.033) (0.033) (0.035) (0.035)

Station Brand Fixed E�ects Y Y Y Y
Number of Stops 744 744 744 744
Number of Trips 21355 21355 21355 21355
Observations 815070 815070 815070 815070

Implied Value of Time ($/hour)

27.54 27.28 27.30 27.28
(3.31) (3.27) (3.25) (3.27)

Notes: Table reports pseudo maximum likelihood estimates of driver preferences.
�e expected �ll quantities are predicted from the regressions in Table 2. Each
column shows how estimates change if we add controls for the characteristics for
the station’s neighborhood. In particular, we add controls for the median house-
hold income ($10,000s) and population density (100 inhabitants per square mile) of
each station’s census tract according to data from the 2010 American Community
Survey. Coe�cient standard errors are reported in parentheses. �e implied value
of time is calculated as 60 · γα and standard errors are reported in parentheses.
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Figure A.7: Consumer Surplus Gains from Adding Stations to Choice Set

Notes: �e solid maroon line plots the average number of stations available to drivers if all the previously un-
passed stations within X minutes of the drivers’ optimal route were added to the choice set. �e dashed black
line shows the change in consumer surplus in dollars per gas stop from adding additional (unpassed) stations to
the choice set, assuming that drivers remain imperfectly informed about current gas prices, relative to the base-
line case where only passed stations are in the choice set. �e do�ed blue line shows the change in consumer
surplus in dollars per gas stop if drivers were perfectly informed about current prices and additional unpassed
stations are added to the choice set, relative to the baseline case with only passed stations in the choice set and
imperfect information about current prices.

Table A.11: Driver Access to Gasoline Station Network vs. Electric Charging Station Network

Gas (All) Gas (Passed) Electric (All)

Stations within 5 Minutes of Route 37.17 23.41 4.75
Closest Station (minutes) 0.77 0.98 4.31

Notes: �e �rst column includes all gas stations in OPIS and the second column only
counts the stations that each driver has previously passed. �e third column summarizes
all public electric chargers in 2021 based on DOE data. �e �rst row reports the average
number of stations located within �ve minutes deviation from a driver’s route, across all
trips in our data. �e second row shows that average time to the closest station relative
to driver’s routes across all trips in the data.
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B Recovering Fuel Tank Levels and Fill�antities

�roughout the IVBSS experiment on-board computers collected an abundance of high fre-
quency data. One variable that the on-board computers did not directly record is each vehicle’s
current fuel tank level. Fortunately, the computers did record each vehicle’s instantaneous
fuel consumption (i.e. the rate of fuel usage). In addition, each vehicle was equipped with an
over-the-shoulder camera which allows us to observe photos of the dashboard fuel gauge. We
combine the data on instantaneous fuel consumption together with the information from the
fuel gauge photos to recover estimates of the current fuel tank level for each vehicles at the
start of each trip.

Our procedure to recover the fuel tank levels involves two primary parts. In the �rst part,
Amazon Mechanical Turk workers viewed images of the fuel gauge and classi�ed each image
into numeric tank level category. We then use the fuel tank classi�cations along with the data
of instantaneous fuel consumption in a regression framework to recover implied fuel tank
levels. �is procedure also provides us an estimate of the quantity of fuel that each driver
purchased at each refueling stop. �e details of our procedure are as follows:

1. First, we collected the sample of every-�ve-minute cabin photos. From the cabin photos,
we cropped a 30x25 pixel rectangle at the fuel gauge location. Based on an analysis of the
pixels in the center of this rectangle, we classify the image into one of four types: good,
underexposed, overexposed, and low contrast. �e image is rescaled and smoothed.

2. We then uploaded the “good” gauge photos to Amazon S3 for classi�cation by Mechan-
ical Turk workers.

• �e Amazon Turk workers completed a series of tasks. Each task consisted of the
classi�cation of three fuel gauge photos. �e tank levels ranged from 0 (empty) to
8 (full), with a value of 9 corresponding to an illegible tank level. At least three
workers classi�ed each photo and some photos were classi�ed by six workers.

3. We estimate the tank level associated with each �ve minute interval (i.e. each photo) as
the mean tank level classi�cation (across the Amazon Turk workers) between 0 and 8.
A�er using this data to impute the fuel tank levels, we rechecked and corrected some
outlying classi�cations.

4. Next, we collected the raw IVBSS data for fuel consumption for each vehicle and trip.
�e fuel consumption variable records the cumulative fuel consumption (in milliliters)
for each �ve-minute interval. Some corrections are required for this variable due to an
over�ow error on long trips, as well as some other errors caused by computer resets. We
also collect the data on the exact times that refueling stops occurred. We then combine
the incremental fuel consumption for each �ve-minute interval and the data on refueling
times into a common data set.
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5. To recover the fuel tank level at each �ve-minute interval for each driver, we estimate a
regression of the cumulative fuel consumption on (i) a quadratic in the fuel gauge level
between 0 and 8, and (ii) driver-by-refueling-event �xed e�ects.

• �e driver-by-refueling-event �xed e�ects correspond to the initial fuel tank level
at the start of each refueling event. We also shi� all of the tank levels up by two
gallons based on an assumption that there are two gallons remaining in the fuel
tank when the gauge is at empty.

6. We combine the initial fuel tank level at the time of each refueling event (from our esti-
mated regressions), with the incremental fuel consumption data to calculate the current
fuel tank level at each �ve-minute interval.35

7. Finally, we aggregate the data to the driver-by-trip level to obtain the initial fuel tank
level at the start of each trip. In addition, we infer the fuel purchase quantity associated
with each refueling event as the change in fuel tank level (in gallons) between trips
before and a�er a refueling event occurred.

35We use the second-by-second fuel consumption data to obtain an estimate of the fuel tank level at each
second and then aggregate up to the �ve-minute level.
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C EV Refueling Choice Model and Counterfactuals

C.1 Determining Excess Refueling Times for EVs

When making their EV refueling decision, we allow drivers to either (1) drive to the charging
station and wait for their vehicle to recharge or (2) park their vehicle at the charging station
and walk to their destination. For each station, we assume that drivers would choose to “walk”
or “wait” to minimize the excess time spent refueling.

We de�ne excess time refueling as the additional time that a driver would spend if they
choose to refuel on a given trip compared to if they were instead to travel directly from their
trip’s origin to destination on the optimal route plus the time spent at the destination. We
include the time spent at the destination to incorporate that drivers can recharge their vehicle
while they are visiting a destination. For example, a driver that spends several hours at work,
could park and charge their EV at a station during the work day. �erefore, the calculation of
excess time refuel time for each EV station on each trip entails several steps:

1. Determine the drivers’ refuel quantities conditional on stopping.

• In our estimation sample, drivers purchase an average of 7.65 gallons which is
equivalent to 256 kWh of electricity. �us, on our baseline counterfactual we as-
sume that drivers would re�ll their EV with an equivalent amount of “fuel” as we
observe the drivers refueling in the gasoline market. However, we also show how
the results would change if drivers decided to re�ll their EV more frequently with
smaller quantities

2. Calculate the technological time required for the driver to refuel.

• �e time required to re�ll is determined by the assumed speed of the charging
technology. For example, with a 128 kW charger would take two hours to charge
256 kWh of energy.

3. Calculate the excess time associated associated with the drivers two possible refueling
options: (1) “wait” and (2) “walk”.

• For the “wait” option the total excess refueling time is equal to the sum of the
excess driving time to travel to the station plus the technological charging time
(from Step 2). �e excess drive time is calculated in the same way as we calculate
excess travel time for gasoline stations (see Section 2).

• For the “walk” method, excess time is calculated as follows:

(a) Determine the amount of time that the driver spends at the �nal destination.
(b) Calculate the time it would take the driver to walk round-trip from the refu-

eling station to the destination assuming a walking speed of 3 miles per hour.
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(c) Determine how much “additional” waiting time, if any, is needed to complete
the charging cycle. Here, we compare the technological refuel time with the
sum of the time spent at the destination and the round-trip walking time from
the station. If the technological refuel time exceeds the sum, then additional
waiting time is added to the total excess refueling time.
– Suppose a driver requires three hours of technological charging time to

achieve the refuel quantity established in Step 1. Further, suppose that the
driver spends 2 hours at the destination and it takes 20 minutes to walk
from the charging station to the destination. In this case, 40 minutes of
waiting time is added to the total excess time for the “walk” method.

(d) Calculate the net driving time to drive from the origin to the charging station
instead of the origin to the destination.

– Note that this net driving time could be negative if the station is closer to
the origin than the destination.

(e) �e total excess time for the “walk” option is:
Total Excess Time = Added Walk Time (b) + Added Wait Time (c) + Net Drive
Time (d)

4. �e excess time for each station on each trip is determined by the option (walk or wait)
with the minimum total excess time.

• In our main speci�cation we assume that drivers simply minimize time but we
also show the robustness of the result under an alternative assumption that drivers
strictly prefer waiting to walking and vice versa.

Example
As an example, suppose a driver is traveling from origin A to destination C and is con-

sidering stopping at station B. �e driver has two options: (1) they can wait at station B—this
option adds �ve minutes of driving time to visit station B, or (2) they can leave their car at
station B and walk to destination C—this option saves two minutes of driving time but adds 32
minutes of round-trip walking time. �e vehicle will take one hour to recharge and the driver
plans to spend 20 minutes at destination C. If the driver waits at the station for the vehicle to
charge, they will add 65 minutes of excess time to refuel—�ve minutes of added driving time
plus 60 minutes of waiting time. On the other hand, if they choose to park and walk to the
destination they would add only 40 minutes of excess refueling time—two fewer minutes of
driving time, 30 minutes of added walking time, and 10 minutes of waiting time. �us, we
specify that the excess time associated with recharging at station B is 40 minutes.
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C.2 EV Refueling Choice Model Implementation Details

A�er we calculate the excess refueling time for each EV station located within a 20-minute
drive of each trip in our data we can utilize our refueling choice model outlined in Section 3
to predict which charging stations drivers would choose and the expected time cost associ-
ated with those refueling choices. To fully specify the utility model for our counterfactuals,
we assume that all of EV stations charge the same prices and have the same brand quality.
Our estimated utility function includes station brand e�ects, so for the counterfactuals, we
omit these �xed e�ects and solve for a new intercept in the utility function associated with
stopping to refuel such that the number of predicted EV refueling stops in the counterfactual
equals the number of gasoline refueling stops observed in the data. In alternate versions of
the counterfactuals, we assume that drivers stop more (or less) frequently to refuel but with
smaller (or larger) quantities. For these alternate counterfactuals, we solve for the intercept
in the utility function to match our assumed frequency of stops with the model’s predicted
stop frequency.

C.3 Discussion of Key EV Refueling Assumptions

1. Homogeneous prices and brand quality

• We assume homogeneous prices and brand qualities in part because we lack de-
tailed data on EV charging stations’ prices and quality. However, this assumption
also allows us to isolate the impact of changes in the density of charging stations
and speed of the charging stations on excess refueling time. In practice, we would
expect that charging stations with more convenient locations would be likely to
charge higher prices. If stations with be�er locations were to charge higher prices
that would lead us to underestimate expected EV refueling times. However, given
that the EV network is relatively sparse and that drivers have a high value of time,
we do not expect that price heterogeneity would lead to substantial changes in
station choices.

2. EV range and frequency of refueling

• In our main set of counterfactuals, we assume that EVs have the same range to
gasoline vehicles and that drivers would choose to refuel them at similar frequen-
cies and energy quantities. A bene�t of this assumption is that it allows us to
be�er isolate the e�ects of the charging station network on excess refueling time.
However, a limitation of the assumptions is that current EVs may have shorter
range than gasoline vehicles. Moreover, because EVs refuel at a much slower rate
than gas vehicles, drivers may choose to refuel EVs more (or less) frequently with
smaller (larger) quantities. We run several alternative speci�cations that vary the
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assumed frequency and quantities that drivers would refuel thier EV. We discuss
the results implied by these assumptions in Section C.6.

3. Preference across refueling options: walking vs. waiting

• In our main set of counterfactuals, we assume that drivers always choose the time-
minimizing option whenever they decide to wait at a charging station or to park
at the station and walk to their destination. In practice, drivers may have explicit
preferences for either walking or waiting when recharging their EV. �erefore,
we also solve the counterfactuals under two alternative assumptions: (1) drivers
prefer to always walk and (2) drivers prefer to always wait. �e results are in
Section C.6.

C.4 Model of Public Charging Investment

Consider a planner that chooses a charging network design to minimizes drivers’ time costs
subject to a budget constraint. �e planner can choose to build additional stations, N or
to upgrade the speed, S, of each charger in the network. For simplicity, we assume that
additional stations would be placed evenly apart in the network and that all chargers in the
network have the same speed. Drivers’ refueling time, τ is a decreasing function both the N
and S. However, increasing either N or S will raise the capital cost of the network. �us, the
planner’s investment problem can be wri�en formally as:

min
N,S

τ(N,S)

s.t. κ ·N · S ≤ B.
(C.1)

Here, B is the budget available to the planner to spend on charging infrastructure. �e func-
tional form for capital costs is motivated by Nicholas (2019) whose estimate show that capital
cost are roughly proportional by the total power capacity (N ·S) of the network. For example,
installing three 50 kW chargers would cost approximately the same as installing one 150 kW
charger. �erefore, the κ parameter represents the �xed cost of increasing the power capacity
of the network.

Assuming the planner uses the entire budget, the following Lagrangian characterizes the
solution of the planner’s problem:

L(N,S, λ) = τ(N,S)− λ(κ ·N · S −B) . (C.2)

FOCs

∂τ

∂S
= λ · κ ·N (C.3)
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∂τ

∂N
= λ · κ · S (C.4)

Rearranging the two FOCs we can derive the following simple optimality condition:

∂τ
∂N
· N
τ

= ∂τ
∂S
· S
τ
⇒ εN = εS. (C.5)

Intuitively, the most e�cient charging network for a given level of spending must satisfy
the condition that the elasticity of time savings from adding additional stations εN should be
equal to the elasticity of time saving from increasing the charging speed of the network εS .

Notably, the solution does not depend on κ, so we can trace out the e�cient network
con�guration without any further assumptions on the �xed cost structure. To solve for the
e�cient charging network con�guration, we only need to obtain estimates εN and εS .

C.5 Estimation of the Refueling Time Function τ(N,S)

We use our EV refueling model discussed in Appendices C.1, C.2, and C.3 to evaluate the
excess refueling times—the τ(N,S) function—at a grid of di�erent values of di�erent values
of S and N . Speci�cally, we solve for the excess refueling time across each year between
2011-2021 which provides substantial variation in the number of stations because many new
EV charging stations were entering the market over this time period. We also solve the model
separately across di�erent assumed charger speeds ranging from 20 kW to 260 kW. In total, we
solve the model across 99 (11×9 ) di�erent possible N,S network combinations. �e contour
surface of τ(N,S) based on these 99 points is depicted in Figure 4.

Next, we approximate the surface of τ(N,S) using the following �exible trans-log func-
tional form ��ed to the set of grid points for which we evaluated EV refueling times.

log (Excess Refuel Time) = β0 + β1 log (N) + β2 log (S) + β3 log2 (N) (C.6)

+β4 log2 (S) + β5 log (N)× log (S) + ε (C.7)

�e regression results from our main speci�cation are shown in the second column of
Figure C.1.36 We can see that the regression functions provides an excellent �t with an R2 of
0.987. �e coe�cient estimates indicate that refueling times are decreasing at a decreasing
rate in both N and S.

We use the approximation of τ(N,S) to evaluate the time elasticities with respect to N
and S for the observed EV charger network. Namely, the elasticities are calculated by di�er-
entiating Equation (C.6):

36�e �rst column shows the results using a simpler “Cobb-Douglass” functional form.
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εN =β1 + 2β3 + β5 log(S)

εS =β2 + 2β4 + β5 log(N) (C.8)

We see in Table 5 that in 2021, the elasticity of charging speed (S) is nearly 5 times larger
than the elasticity with respect the stations (N).

Table C.1: Translog Regression Fit of Excess Refuel Time Surface

Log(Excess Refuel Time)
(1) (2)

Intercept 6.172∗∗∗ 9.863∗∗∗
(0.0793) (0.2202)

Log(N) -0.2176∗∗∗ -0.7133∗∗∗
(0.0095) (0.0483)

Log(S) -0.3234∗∗∗ -1.431∗∗∗
(0.0120) (0.0654)

Log2(S) 0.1172∗∗∗
(0.0067)

Log2(N) 0.0371∗∗∗
(0.0036)

Log(N) × Log(S) 0.0163∗∗∗
(0.0053)

Observations 99 99
R2 0.92850 0.98708
Adjusted R2 0.92701 0.98639

Notes: Table reports regression estimates of excess
refueling time (per stop) on the number of stations
(N) and the charger speed of the network. We use
99 di�erent combinations of stations (N) and kW
charger speed (S) to �t the regressions. Our pre-
ferred speci�cation, Column (2), is used to evalu-
ate the elasticity of excess refueling time with re-
spect to changes in the number of stations (N) and
changes to the charging speed (S) of the network.

C.6 EV Refueling Results - Sensitivity Analysis

We make a number of key behavioral assumptions (see Section C.3) to calculate the EV refu-
eling times across di�erent charging network con�gurations. In this section, we investigate
how changes to these underlying assumptions a�ect the �nal results. We perform two distinct
sets of sensitivity analyses. In the �rst set, we vary drivers’ assumed preferences over the way
that they would travel to refuel their EV. In the second set of sensitivity checks, we vary the
assumed frequency (and purchase quantity) that drivers would refuel their EV.
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Table C.2: EV Refueling Results - Sensitivity Analysis

Excess Time Per Refuel (Normalized)

Total
(Min.)

Drive
(Min.)

Walk
(Min.)

Wait
(Min.)

Walk
Share
[0, 1]

Excess Time
Elasticity
w.r.t. # of
Stations

Excess Time
Elasticity

w.r.t. Charger
Speed

Baseline
Walk or Wait to Minimize Time 30.63 -0.12 30.10 0.64 1.00 -0.11 -0.52

Refuelling Preference
Always Walk to Destination 30.63 -0.12 30.10 0.64 1.00 -0.13 -0.47
Always Wait at Charger 532.90 3.91 0.00 528.99 0.00 0.00 -1.00

Refuelling Frequency
2X Fewer Refuel Stops than Gas 17.63 -0.00 17.29 0.34 1.00 -0.10 -0.95
2X More Refuel Stops than Gas 63.56 -0.02 61.52 2.06 1.00 -0.24 -0.28
10X More Refuel Stops than Gas 414.24 25.42 152.48 236.34 0.58 -0.09 -0.66
20X More Refuel Stops than Gas 618.32 113.06 42.12 463.14 0.13 -0.09 -0.79

Notes: �e table shows the sensitivity of refueling choices and the estimated excess refueling times
to changes in behavioral assumptions. In our baseline simulation (Row 1) drivers are assumed to
refuel EVs at the same frequency (i.e. number of stops per week) as they refuel the gas vehicle and
we assume that upon refueling, drivers choose to either wait at the charging station or walk to their
destination to minimize total excess time. In the lower rows we show how the results change if
drivers prefer to “wait” as opposed “walk” and if driver were to change the frequency they refuel an
EV relative to a gas vehicle. �e excess time columns indicate the average amount of total excess
time to refuel. All times are normalized to measure the excess time per the energy equivalent of a
“gas” refueling stop. �e walk share column indicates that the fraction of refueling stops that drivers
park at the charging station and then walk to their �nal destination. �e last two columns show he
elasticity of excess time with respect to changing the number of stations and charger speed, based
of 2021 EV charging network.

�e �rst row of Table C.2 shows the results corresponding to our “baseline” assumptions.
Namely, we assume that drivers choose the refueling option between “walk” or “wait” to
minimize excess time refueling. Moreover, in the baseline counterfactuals, we impose that
drivers would refuel their EV at the same frequency as they refuel a gas car, and with energy
equivalent “fuel” quantities.

In the baseline counterfactual, we estimate that drivers would spend approximately 31
excess minutes for each time that they refuel their EV. �e charging network in 2021 features
relatively slow charging speeds (29 kW) so drivers �nd that walking from the charging station
to the destination is time-minimizing nearly 100% of the time. In the baseline counterfactual,
almost all of the excess refueling time comes from time that drivers spend walking to and
from the charging station. Drivers save 0.12 minutes of driving time each time that they
refuel because the chosen charging stations are slightly closer to the trip origin, on average,
and drivers also spend an additional 0.64 minutes waiting for the charge cycle to complete
a�er they walk back to their vehicle.

In the middle section of Table C.2 we investigate how the results would change if we
assume drivers prefer to always “walk” (row 2) or to always “wait” (row 3). �e case where
drivers always “walk” is nearly identical to the baseline results because drivers almost always
�nd it to be time-minimizing to walk. In row 3, we see that always waiting at the charger
would substantially increase excess refueling time to 533 minutes per refueling stop. �is
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result is explained by the slow charging speed of the current network—at 29 kW charge speed,
it takes over 500 minutes to refuel an EV with 256 KWh of electricity (the equivalent of 7.65
gallons of gasoline). In the last two columns of Table C.2, we see that the elasticity of excess
time with respect to the number of stations is roughly equal to zero. Although adding more
charging stations would slightly reduce driver’s time spent driving to the charging station,
the Table shows that added driving time makes up less than 1% of the total refueling time
so therefore additional charging stations would barely change the total excess refueling time
estimate. On the other hand, over 99% of the refueling time in this speci�cation comes from
waiting at the charging station, therefore any increases in charger speed should reduce the
total excess refueling time with an elasticity equal to approximately 1. Hence, if drivers prefer
to wait at the charging station instead of walking, this would imply an even larger marginal
bene�t of increasing the networks’ speed compared to increasing the number of stations.

In the bo�om section of Table C.2 we solve for counterfactual EV refueling times under
di�erent assumptions about drivers’ refueling frequency and refueling quantity. More specif-
ically, we calculate excess refueling times for four separate cases. First, we consider the case
where drivers refuel their EV half as o�en as they refuel their gas car while also recharging
with double the “fuel” quantity at each stop (i.e., the electricity equivalent of 7.65×2=15.3
gallons). Importantly, increasing the assumed refuel quantity will double the technological
time required to recharge the vehicle. Second, we solve the model under the assumption that
drivers would stop to recharge their EV twice as o�en as they stop to refuel their gas cars,
and thereby reduce per stop charge quantities by 50% compared to the baseline counterfac-
tual (row 1). Finally, we solve the model for two more cases where drivers refuel the EV 10
times and 20 times more frequently relative to the frequency that they refuel a gas vehicle. To
make the excess time estimates comparable across rows, we normalize the excess refueling
time estimates and report the excess refueling time per the energy equivalent of an average
gasoline refueling stop. For example, if drivers make twice as many refueling stops relative to
the baseline, we multiply the refueling time per stop by two when reporting the excess time
estimate in Table C.2.

�e bo�om section of Table C.2 shows that drivers reduce total refueling time from 30.6
minutes to 17.6 minutes when they reduce their refueling frequency by 50%. When reducing
refueling frequency, drivers still choose to always to walk from the charging station to the
destination, and the vast majority of the total excess time is spent walking. Drivers’ are able
to reduce excess walking time compared to the baseline case because they are more likely
to be able to �nd charging stations close by to their trip destinations when they refuel less
frequently. �is result highlights a potential bene�t to drivers of increasing the range of EVs.
Finally, we also see that the elasticity of excess time with respect to charger speed becomes
even larger compared to the baseline. Moreover, the elasticity with respect to charger speed
is over nine times larger than the elasticity with respect to the number of stations. �us, the
�nding that faster charging speeds would be more valuable to drivers than increasing the
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number of stations is robust to a case where drivers choose to refuel their EV less frequently
that than their gas vehicle.

�e last three rows of Table C.2 show that the more o�en that drivers choose to refuel
the EV, the higher the total excess time refueling will be. If drivers’ refueling frequency were
to double with EVs, then the total excess refueling time roughly doubles to 63.56 minutes
compared to the baseline. In this scenario, drivers nearly always �nd it optimal to “walk”
from the charging station to the destination because the technological refueling time is still
roughly 3-4 hours. �erefore, this refueling option is strictly dominated by the baseline case
(row 1) because total refueling time increases without any reduction in walking. On the other
hand, if drivers were to make many more short refueling stops with their EV, then it becomes
more likely that drivers would “wait” at the charging station. If drivers increase refueling
stops 10-fold then they decide to wait at the station 42% of the time, and if they increase the
number of refueling stops 20-fold then they wait 87% of the time. Intuitively, when drivers
increase refueling frequency by 20 times and decrease refueling quantity by 95%, the required
technological charging time per stop falls below 30 minutes per stop, making waiting more
a�ractive. Although, stopping more frequently makes waiting at the charging stations more
practical, we see that overall refueling times are much higher compared to the baseline with
less frequent stops but with charging higher quantities.

In summary, we see that the EV excess refueling time estimates are sensitive to the as-
sumptions that we make about driver preferences. However, the comparative result that the
excess time elasticity with respect to charger speed is larger than the excess time elasticity
with respect to the number of stations hold across all of these alternative assumptions.
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