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Abstract

We provide empirical evidence that automobile manufacturers use cash incentives
to offset how gasoline price fluctuations affect the expected fuel expenses of automobile
buyers. Regressions based on a database of incentives over 2003-2006 suggests that, on
average, manufacturers offset 40% of the change in relative fuel costs between vehicles
due to gasoline price fluctuations. The results highlight that (1) carbon taxes and
emissions trading programs likely would generate substantial substitution within vehi-
cle classes, and (2) studies that ignore manufacturer discounting likely underestimate
consumer demand for fuel economy. The results also have implications for the optimal
design of feebate programs.
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1 Introduction

An unusual confluence of events has positioned the transportation sector’s reliance on gaso-

line near the forefront of national policy debate. Retail gasoline prices have exhibited in-

creased volatility over the past decade, including a 17 month period in which prices rose from

$2.21 per gallon to $4.17 per gallon.1 The foreign policy and environmental externalities as-

sociated with crude oil usage have been put in stark relief due to conflicts in the Middle

East and extensive debates regarding climate change policy. And the financial bailout of

the American automotive industry has raised questions about the management of the “Big

Three” manufacturers and the role of new vehicle production in the broader economy.

The policy interest in automobile demand has been matched by a renewed interest

among academic economists in understanding how consumers react to gasoline prices.2 This

research falls broadly into two groups. The first aims to recover consumer valuations of fuel

economy (e.g., Goldberg (1998); Bento et al (2009); Gramlich (2010); Allcott and Wozny

(2010); Jacobsen (2010); Beresteanu and Li (2011)). These papers estimate random utility

models of demand and focus on the covariance between vehicle market shares and gasoline

prices, controlling for suggested retail prices and other vehicle characteristics. The second

group seeks to understand how gasoline prices affect equilibrium demand outcomes; these

papers generally regress measures of fleet fuel efficiency on gasoline prices and controls (e.g.,

Li, Timmins and von Haefen (2009); Busse, Knittel and Zettelmeyer (2011); Klier and

Linn (2010a)).3 A reasonable synthesis of results is that many market-based interventions,

such as moderate carbon and gasoline taxes, are unlikely to produce substantial consumer

substitution toward fuel efficient vehicles.

We contribute to this literature by focusing more explicitly on the short run supply-side

behavior of automobile manufactures. In particular, we examine the empirical relationship

between gasoline prices and the cash incentives offered by manufacturers on a week-to-week

basis. The strength of this relationship informs consumer substitution patterns. Intuitively,

if the cash incentives available on fuel inefficient vehicles rise with gasoline prices then one

can infer that manufacturers are acting to mitigate substitution toward fuel efficient vehicles.

1This is according to weekly data on all grades, all formulations gasoline prices published by the Energy
Information Agency of the US Department of Energy for January 29, 2007 and July 7, 2008. This followed
nearly 20 years of steady or declining real gasoline prices.

2The subject also attracted substantial attention from economists following the 1970s oil crises (Blomquist
and Haessel (1978); Carlson (1978); Dahl (1979); Greenlees (1980); Wheaton (1982); Kahn (1986)).

3This is a loose characterization. Li, Timmins, and von Haefen (2009) and Busse, Knittel and Zettelmeyer
(2011) estimate how gasoline prices affect average vehicles sales in various fuel efficiency quantiles. Klier and
Linn (2010a) estimate the how fuel costs affect the sales of individual vehicles.
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Furthermore, the relationship between cash incentives and gasoline prices has implications

for the proper specification of random utility models that aim to recover consumer valuations

of fuel economy directly.

We base our analysis on a theoretical model of Nash-Bertrand competition among

manufacturers facing linear demand schedules. We solve the manufacturers’ first-order con-

ditions and demonstrate that, in equilibrium, gasoline prices affect an automobile’s cash

incentives through three main channels: their effect on the vehicle’s fuel cost, their effect on

the fuel costs of the vehicle’s competitors, and their effect on the fuel costs of other vehicles

produced by the same manufacturer.4 Provided that demand is symmetric, or close to sym-

metric, the first two channels dominate. It follows that cash incentives should increase with

gasoline prices for vehicles that are fuel inefficient relative to their closest competitors, but

decrease for relatively fuel efficient vehicles. We manipulate these equilibrium relationships

to construct a reduced-form regression equation that we take to data.

In the empirical analysis, we examine of a comprehensive set of manufacturer incentive

programs offered by General Motors, Ford, Chrysler, and Toyota over the period 2003-2006.

We use these data to construct a measure of the cash incentives available to purchasers

of each vehicle, in each week and geographic region. We combine information on vehicle

miles-per-gallon (MPG) with information on retail gasoline prices to measure fuel costs. We

then regress the cash incentives of each vehicle on the fuel costs of the vehicle, the weighted

average fuel costs of the vehicles produced by competitors, and the weighted average fuel

costs of other vehicles produced by the same manufacturer. Estimation exploits variation

in 230,835 vehicle-week-region observations. The reduced-form coefficients of interest are

identifiable even in the presence of vehicle, time, and region fixed effects because gasoline

prices affect fuel costs differentially across vehicles (the fuel costs of inefficient vehicles are

more responsive to the gasoline prices than the fuel costs of efficient vehicles).

We find that, on average, the cash incentives available for purchasers of a given vehicle

increase in the vehicle’s fuel costs and decrease in the weighted average fuel costs of vehicles

produced by competitors. The net effect is negligible for vehicles that provide similar MPG

relative to their close competitors, but can be positive or negative for vehicles that are

relatively fuel efficient or inefficient. To quantify these differential effects, we calculate the

proportion of changes in the relative cumulative gasoline expenditures across vehicles that

are offset by cash incentives.5 The results correspond to an average manufacturer offset of

4By “fuel cost” we mean the gasoline expense of driving.
5Suppose that vehicle A gets 20 miles-per-gallon, vehicle B gets 30 miles-per-gallon, and the gasoline

price is $2.00 per gallon. Then, under plausible assumptions on the discount rate and vehicle usage rates,
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40 percent, and we interpret this as a lower bound on the amount that consumers value

cumulative gasoline expenditures relative to purchase prices.

The estimated short run relationship between gasoline prices and the cash incentives of

manufacturers underscores that market-based policy instruments, such as carbon taxes and

emissions trading programs (“cap and trade”), likely would yield substantial abatement from

the automobile sector. Further, while our analysis focuses on short run pricing decisions,

the results suggest that manufacturers also should adjust research and design investment

decisions in response to market-based policy instruments, given the clear relationship be-

tween markups and vehicle profitability. We calculate that a one dollar increase in gasoline

prices would lead the average markup on vehicles in the highest MPG quartile to increase

by $340 relative to the average markups in the lowest MPG quartile. This channel is well

understood to exist but previous efforts to quantify its importance have been scarce (an

exception is Klier and Linn (2010b)).6

The main results also raise the question of whether the discrete choice literature, which

typically has not controlled for supply-side pricing patterns, provides consistent estimates

of consumer demand for fuel economy. Intuition suggests that bias exists. For instance, our

results show that when gasoline prices rise, manufacturers respond with cash incentives that

damp consumer substitution toward fuel efficient vehicles, partially compensating consumers

for the differential impact of gasoline prices. If cash incentives are unobserved in the data,

the damped consumer shift could be mistaken for consumers being unresponsive to gasoline

prices. We derive the bias term formally and show that, for the special case of logit demand,

the bias term is obtainable from the covariance between fuel costs and cash incentives. Based

on the data, our best estimate is that a downward bias of 13.7 percent is present. We suspect

that bias would be exacerbated in the more general nested logit case. Although our data

are insufficient to support a point estimate, we provide some evidence that suggests a wide

range of possible bias with a possible upper bound (on the downward bias) of 80 percent.

It follows that, in equilibrium, one should expect market-based policy instruments to yield

more abatement from the automobile sector than some models predict.

We also establish the secondary result that, on average, the cash incentives of a given

the difference in expected cumulative gasoline expenditures between the two vehicles is $3,762. This gap
increases to $4,703 for gasoline prices of $2.50 per gallon. If the results indicate that a $0.50 increase in the
gasoline price induces the cash incentives of A to increase by $375 more than those of B, then we calculate
the proportion of relative fuel cost changes that are offset by cash incentives as $375/($4703−$3762) = 40%.

6Whereas other work develops the correlation between vehicle transaction prices and gasoline prices
(Busse, Knittel and Zettelmeyer (2011)), to our knowledge our results are the first that explicitly identify
manufacturers, rather than automobile dealerships, as the source of vehicle price adjustments.
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vehicle correlate more with the fuel costs of similar vehicles than with the fuel costs of dis-

similar vehicles – consistent with consumers viewing vehicles of the same type or segment

as closer substitutes than vehicles of different type or segment. Thus, the result suggests

carbon taxes and emissions trading programs likely would generate more consumer substi-

tution within vehicles types than across vehicles types, e.g., leading consumers to replace

relatively fuel inefficient SUVs with fuel efficient SUVs rather than leading consumers to

replace SUVs with cars. The result also has implications for the optimal design of revenue-

neutral “feebate” programs, under which tax credits are given to purchasers of vehicles with

fuel efficiency above some benchmark level while extra fees are charged to purchasers of other

vehicles.7 In particular, it suggests the possibility that the use of multiple benchmarks (e.g.,

different benchmarks for cars, SUVs and light duty trucks) could improve effectiveness by

generating higher-powered incentives for intra-type substitution.8 Finally, the result implies

that the immediate impact of electric vehicle subsidies on vehicle choice may be limited

because such subsidies are most likely to entice only consumers with strong pre-existing

preferences for compact or sub-compact cars.9,10

Finally, our work is largely complementary to Busse, Knittel and Zettelmeyer (2011),

which examines a ten percent sample of automobile purchases over 1999-2008 and estimates

the mean effect of gasoline prices on the transaction prices of vehicles in each MPG quartile.

They find that a one dollar increase in the gasoline price lowers average transaction prices in

the lowest MPG quartile by $250 and raises average transaction prices in the highest MPG

quartile by $104. Our results are similar when comparably aggregated: we find that a one

7Denmark, France, the Netherlands and Norway currently use single benchmark feebate programs to
encourage purchases of more fuel efficient vehicles. Feebate legislation (AB493) was defeated in the California
legislature in January 2008. The optimal design of feebate programs previously has been considered in the
academic literature (e.g., see Peters et al (2008)). The use of multiple benchmarks potentially could allay
concerns about the fairness of single benchmark feebate programs, related to some consumers being forced
to pay additional fees for larger vehicles that they view as necessary for family or work obligations.

8Suppose that the maximal fee and rebate are predetermined due to political considerations, and compare
a multiple benchmark scheme that interpolates between the maximal fee and the maximal rebate separately
for SUVs and cars against a single benchmark scheme that applies the maximal fee to the least efficient
SUV, applies the maximal rebate to the most efficient car, and interpolates in between by MPG without
consideration of vehicle type. The multiple benchmark scheme likely would encourage greater substitution
from inefficient SUVs to efficient SUVs and greater substitution from inefficient cars to efficient cars. While
the multiple benchmark scheme could also generate substitution from inefficient cars to efficient SUVs,
thereby undermining effectiveness, our results suggest the magnitude of such inter-type substitution likely
would be limited.

9Electric vehicles have generally not been released as SUVs due to technological barriers.
10We thank an anonymous referee for pointing out that the secondary result also suggests the within-type

and within-segment elasticity estimates of the discrete choice literature may contain more bias than estimates
of across-type or across-segment elasticities.
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dollar increase in the gasoline price raises average incentives in the lowest MPG quartile

by $248 and lowers cash incentives in highest MPG quartile by $92. This provides useful

corroboration. More generally, the main focus of Busse, Knittel and Zettelmeyer (2011) is

on providing a comprehensive analysis of how gasoline prices affect the sales and prices of

new and used automobiles of different MPG quartiles. By contrast, we focus exclusively on

manufacturer pricing and more fully leverage theory to inform the regression specification.

The paper proceeds as follows. In Section 2, we discuss the data used in the analysis,

with a particular focus on the cash incentives, gasoline prices, and vehicle characteristics.

We develop the theoretical framework of Bertrand-Nash competition in Section 3. Then, in

Section 4, we derive the regression equation, provide a means for interpreting results, and

discuss issues related to identification. We present our baseline results together with various

sensitivity analyses in Section 5, develop the implications for the existing discrete choice

literature in Section 6, and conclude in Section 7.

2 Data

We examine the proprietary data of Autodata Solutions, a marketing research company

that maintains a comprehensive list of manufacturer incentive programs. We focus on the

national and regional cash incentives offered by General Motors, Ford, Chrysler, and Toyota

over the period 2003-2006.11 There are 141,842 incentive-vehicle pairs in the data, each of

which provides cash to consumers (“consumer cash”) or dealerships (“dealer cash”) at the

time of purchase.12 Panel A of Table 1 provides summary statistics for these incentives. The

mean incentive provides $1,389 in cash and is offered for 61 days. Just more than half the

incentives apply to a single vehicle.

The theoretical framework we introduce provides a reduced-form expression for equi-

librium incentive levels, given inter-temporal realizations of supply and demand conditions.

Accordingly, we use the data to approximate the cash incentive available to consumers for

each vehicle in the data, in each region and week. More than one incentive frequently is

11The German manufacturer Daimler owned Chrysler over this period. We exclude Mercedes-Benz from
this analysis since it is traditionally associated with Daimler rather than Chrysler. We consider an incentive
to be regional if it is available across an entire Energy Information Agency region. The five EIA regions are
East Coast, Gulf Coast, Midwest, Mountain West, and West Coast. See www.eia.doe.org for details.

12We focus on cash incentives that are available to the general public. To that end, we exclude incentives
that are targeted to specific consumer groups (e.g., the “DaimlerChrysler Farm Bureau Member Certificate”).
Employee discounts are excluded, though in 2005 there was a period during which some manufacturers
made employee discounts available to non-employees. The inclusion of employee discounts in 2005 does not
materially affect the results.
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Table 1: Summary Statistics

Panel A: Distribution of Cash-Back Incentives

Variable Mean 10% 25% 50% 75% 90%

Cash Amount 1,389 500 500 1,000 2,000 3,000

Duration 61 11 20 40 82 104

# Vehicles 6.5 1 1 2 5 20

Panel B: Distribution of Maximum and Mean Incentive

Variable Mean 10% 25% 50% 75% 90%

Maximum Incentive 1,536 0 500 1,000 2,500 3,500

Mean Incentive 917 0 500 750 1,167 1,750
Panel A is based on 141,842 incentive-vehicle pairs over 2003-2006. Cash
Amount is in dollars, Duration is in days, and # Vehicles represents the
number of vehicles to which the incentive can be applied. Panel B is based
on 230,835 vehicle-region-week observations over 2003-2006. Maximum In-
centive and Mean Incentive are the maximum and mean cash incentive
available for a given vehicle, region, and week, respectively.

available for given vehicle-region-week combinations. This occurs most often when manu-

facturers pair a broadly applicable incentive (e.g., an incentive for midsize cars) with more

specifically targeted incentives. Since consumers likely select among the available incentives,

we construct our baseline measure with the maximum incentive. For robustness, we also

examine the mean incentive. Panel B of Table 1 provides information on the empirical dis-

tributions of the two measures. The maximum incentive has a mean of $1,536 while the

mean incentive has a mean of $917. Notably, at least one incentive is available in 82.41% of

the vehicle-region-week observations.

The second key ingredient to the empirical analysis is the gasoline price. We obtain

regional gasoline prices over 2003-2006 from a weekly survey of pump prices conducted by the

Energy Information Agency (EIA).13 Figure 1 plots gasoline prices over the sample period.

That a run-up in gasoline prices occurred over the sample period is well known. The EIA

data indicate that national gasoline prices (per gallon) increased from an average of $1.75

in 2003 to an average of $2.57 in 2006. The seasonality of the data are also noticeable;

prices are higher during summer months and lower during the winter months. We purge the

gasoline prices of this seasonality prior to their use in analysis; since manufacturers adjust

13The survey methodology is detailed online at the EIA webpage. Pump prices are net of all taxes.
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Figure 1: Weekly Pump Prices of Gasoline over 2003-2006.

their prices cyclically over vehicle model-years (e.g., Copeland, Dunn, and Hall (2005)),

seasonality in gasoline prices is potentially confounding.14 The data reveal an upward spike

in gasoline prices around September 2005. This is due to the effects of Hurricane Katrina,

which temporarily eliminated more than 25 percent of US crude oil production and 10-15

percent of the US refinery capacity (EIA 2006).

Finally, we use certain vehicle characteristics in the analysis. These characteristics are

also obtained from Autodata Solutions. To be clear, by “vehicle,” we mean a particular

model in a particular model-year. The 2003 Ford Taurus is one vehicle in the data, and

we consider it as distinct from the 2004 Ford Taurus. Overall, there are 546 vehicles in the

data – including 294 cars, 191 SUVs, and 61 trucks. We observe the manufacturer-suggested

retail price (MSRP), miles-per-gallon, horsepower, wheel base,15 and passenger capacity. We

construct a measure of fuel costs by dividing the relevant gasoline price by miles-per-gallon

14We employ the X-12-ARIMA algorithm, which is also used by the Bureau of Labor Statistics to desea-
sonalize inputs to the consumer price index. We use data on gasoline prices over 1993-2008 to estimate the
seasonal factors, adjusting the regional time-series independently. We specify a multiplicative decomposi-
tion, which allows the effect of seasonality to increase with the magnitude of the trend-cycle. The results are
robust to log-additive and additive decompositions. For more details on the X-12-ARIMA, see Makridakis,
Wheelwright and Hyndman (1998) and Miller and Williams (2004). We refer the reader to the working
paper version of this paper (Langer and Miller (2008)) for plots of the deseasonalized gasoline prices. As we
discuss below, the regression specification includes a fixed effect for each week in the data, which removes
the influence of any seasonality that remains after we apply the X-12-ARIMA.

15Wheel base is the distance from the center of the front wheel to the center of the rear wheel, and is a
standard measure of vehicle size. We report wheel base in inches.
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(this ratio is the gasoline expense of a single mile of travel).16

Table 2 provides summary statistics for these vehicle characteristics, both for the full

sample and separately for cars, SUVs, and trucks. The unit of observation in each case

is at the vehicle-region-week level. Fuel Cost is the ratio of the gasoline price to miles-

per-gallon; its mean of 0.10 indicates that gasoline expenses are roughly 10 cents per mile

on average. The means of MSRP, miles-per-gallon, horsepower, wheel base, and passenger

capacity are $29,118, 22.90, 218.39, 111.75, and 5.08, respectively. The subsample statistics

are consistent with the generalization that cars are smaller, more fuel efficient, and less

powerful than SUVs and trucks. As we discuss below, the regression specification includes

vehicle fixed effects to account for vehicle heterogeneity (both observed and unobserved) but

the vehicle characteristics nonetheless play an important role.

Table 2: Means of Variable Characteristics

Variables All Vehicles Cars SUVs Trucks

Fuel Cost 0.10 0.09 0.11 0.11

MSRP 29,118 28,543 32,131 22,331

Miles-Per-Gallon 22.90 25.91 19.42 19.83

Horsepower 218.39 205.43 237.58 218.13

Wheel Base 111.75 107.79 114.29 122.12

Passenger Capacity 5.08 4.84 5.88 3.74
Means are based on vehicle-region-week observations over the period 2003-
2006. There are 230,835 observations on 546 vehicles in the full sample.
Subsample means are based on 121,860 car observations, 82,600 SUV
observations, and 26,375 truck observation, representing 294 cars, 191
SUVs, and 61 trucks, respectively. Fuel Cost is the gasoline price divided
by miles-per-gallon. Fuel Cost is in dollars per mile, MSRP is in dollars,
and Wheel Base is in inches.

16When more than one set of attributes exist for a vehicle (e.g., due to option packages or multiple trim
levels), we use the attributes corresponding to the lowest MSRP, although the results are fundamentally
unchanged when we use the attributes of the vehicle with the MSRP closest to the mean MSRP for the
model nameplate in a model year. We impute the period over which each vehicle is available to consumers
as beginning with the start date of production, as listed in Ward’s Automotive Yearbook, and ending after
the last incentive program for that vehicle expires. When the start date of production is unavailable, we set
the start date at August 1 of the previous year. As an example, we would set the start date of the 2006 Civic
Hybrid to be August 1, 2005. We impose a maximum period length of 24 months. In robustness checks, we
used an 18 month maximum; the different period lengths do not affect the results.
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3 Theoretical Framework

We derive our regression equation from a model of Bertrand-Nash competition between

automobile manufacturers that a face a linear demand schedule. We take as given that there

are F automobile manufacturers and J vehicles. Each manufacturer produces some subset

Jf of the vehicles and prices to maximize short run variable profits:

πft =
∑

j∈Jf

(pjt − cjt) ∗ q(pjt,p−j,t), (1)

where for each vehicle j and period t, the terms pjt, cjt, and q(pjt,p−j,t) are the manufacturer

price, the marginal cost, and the quantity sold respectively. We assume constant returns to

scale for simplicity, and abstract from the manufacturers’ selections of vehicle attributes and

fleet composition, which is more important to long run analyses.

We assume that consumer demand depends linearly on manufacturer prices, expected

lifetime fuel costs, and certain exogenous demand shifters that include vehicle attributes,

maintenance costs, and other factors:

q(pjt,p−j,t) =
J∑

k=1

αjk(pkt + xkt) + µjt, (2)

where the αjk is a demand parameter, xkt captures fuel costs, and µjt captures the net effect

of the demand shifters. We impose the normality conditions that demand is downward

sloping (αjj ≤ 0), vehicles are substitutes (αjk ≥ 0 for k 6= j), and a price increase common

to all vehicles lowers demand (|αjj| ≥
∑

k 6=j αjk for all j).

The equilibrium manufacturer prices in each period can be characterized by J first-

order conditions. We solve these first-order equations to obtain equilibrium manufacturer

prices as functions of the exogenous factors.17 The resulting manufacturer “price rule” is a

17The solution technique is simple. Turning to vector notation, one can rearrange the first-order conditions
such that Ap = b, where A is a J × J matrix of demand parameters, p is a J × 1 vector of manufacturer
prices, and b is a J × 1 vector of “solutions” that incorporate the fuel costs, marginal costs, and demand
shifters. Provided that the matrix A is nonsingular, Cramer’s Rule applies and there exists a unique Nash
equilibrium in which the equilibrium manufacturer prices are linear functions of all the fuel costs, marginal
costs, and demand shifters.
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linear function of the fuel costs, marginal costs, and demand shifters:

p∗jt = φ1

jtxjt +
∑

k/∈Jf

φ2

jktxkt +
∑

l∈Jf , l 6=j

φ3

jltxlt

+ φ4

jtcjt + φ5

jtµjt +
∑

k/∈Jf

(
φ6

jktckt + φ7

jktµkt

)
+

∑

l∈Jf , l 6=j

(
φ8

jltclt + φ9

jltµlt

)
. (3)

The reduced-form coefficients φ1, φ2, . . . , φ9 are nonlinear functions of the structural demand

parameters. The price rule makes it clear that the equilibrium price of a vehicle depends on

its characteristics (i.e, its fuel cost, marginal cost, and demand shifter), the characteristics

of vehicles produced by competitors, and the characteristics of other vehicles produced by

the same manufacturer. For the time being, we collapse the second line of the price rule into

a vehicle-period-specific factor, which we denote γjt.

Estimation based on equation 3 is infeasible because the J2 fuel cost coefficients per

period cannot be identified with J observations per period. However, the price rule can be

manipulated to obtain an expression in weighted averages:

p∗jt = φ1

jtxjt + φ2

jt

∑

k/∈Jf

ω2

jktxkt + φ3

jt

∑

l∈Jf , l 6=j

ω3

jltxlt + γjt. (4)

In this reformulation, the equilibrium price of a vehicle depends on the vehicle’s fuel cost,

the weighted average fuel cost of vehicles produced by competitors, the weighted average fuel

cost of vehicles produced by the same manufacturer, and the vehicle-time-specific factor.18

This reduces dramatically the number of coefficients to be estimated.

The weights in equation 4 are functions of the structural demand parameters or, equiv-

alently, the own-price and cross-price elasticities. Reduced-form analysis can proceed even

when these structural parameters are unknown and cannot be estimated reliably, provided

that reasonable approximations to the weights can be made. (Of course, if the structural

parameters were known then reduced-form analysis would be more difficult to motivate.)

Analytical solutions for the weights are obtainable through the theory – though the alge-

braic burden increases nonlinearly in the number of vehicles. With three vehicles, the weights

that vehicles 2 and 3 receive in the determination of vehicle 1’s equilibrium price are given

18The weights are ωi
jkt = φi

jkt/φ
i
jt, for i = 2, 3, and the coefficient φi

jt is the sum of the φi
jkt coeffi-

cients (φi
jt =

∑
φi
jkt). Thus, the weights sum to unity for each vehicle-period combination:

∑
k/∈Jf

ω2

jkt =∑
l∈Jf , l 6=j ω

3

jlt = 1.
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by:

ω2

12
=

A12

A12 + A13

and ω2

13
= 1− ω2

12
, where A12 =

α12

α11

−
1

2

α13

α11

α32

α33

. (5)

Here, the demand parameters (α11, α22, α12, . . . ) are as specified in equation 2.19 It follows

that, in determining the equilibrium price of a vehicle, the fuel costs of more readily substi-

tutable vehicles receive greater weight. To see this, note that the ratio αjk/αjj is a diversion

ratio and can be interpreted as the proportion of consumers purchasing vehicle j that con-

siders vehicle k as the next best option.20 As shown, the weight that vehicle k receives in

the determination of price j increases in the diversion ratio between the two vehicles and

decreases in the diversion ratios between vehicle j and other vehicles.

4 The Empirical Model

4.1 Regression equation

The theoretical framework developed above motivates the regression equation that we take

to the data:

INCjtr = β1
gptr

mpgj
+ β2

∑

k/∈Jj

ω̃2

jkt

gptr

mpgk
+ β3

∑

l∈Jj , l 6=j

ω̃3

jlt

gptr

mpgl
+ γ∗jtr, (6)

in which the composite error term γ∗jtr is specified as follows:

γ∗jtr = z′
jtθ + κj + δt + ηr + ǫjt. (7)

The dependent variable, INCjtr, is the maximum cash incentive available for vehicle j in

week t and region r. The main independent variables are own fuel costs (i.e., the ratio of

gasoline price to miles-per-gallon), the weighted average fuel costs of vehicles produced by

competitors, and the weighted average fuel costs of vehicles produced by the same man-

ufacturer. The empirical weights, ω̃2

jkt and ω̃3

jkt, play a crucial role in the construction of

the latter two variables, and we discuss the weights in detail shortly. The composite error

term, which accounts for demand and cost shifters, includes a third-order polynomial in the

number of weeks the vehicle has been on the market and analogous third-order polynomials

19We derive this result in the working paper.
20Diversion ratios are used frequently in antitrust analysis to measure product substitutability because

they can be more easily discerned from data than own-price and cross-price elasticities.
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for vehicles produced by competitors and other vehicles produced the same manufacturer.21

The composite error term also includes vehicle, week, and region fixed effects.

Although the regression equation is tightly linked with equation 4 from the theoretical

framework, some differences exist. For instance, the dependent variable is based on cash

incentives rather than vehicle prices. This switches the signs of the coefficients but does not

have broader implications as the vehicle fixed effects absorb the constant portion of vehicle

prices. Also, we use the ratio of gasoline price to MPG (gasoline expenditure per mile) as

an empirical proxy of expected cumulative fuel costs, a nearly ubiquitous practice in the

empirical literature (e.g., Goldberg (1998); Bento et al (2009); Jacobsen (2010); Gramlich

(2010); Li, Timmins and von Haefen (2009); Sallee, West and Fan (2009); Beresteanu and Li

(2011)). The empirical proxy should be accurate if automobile consumers treat the current

gasoline price as a forecast of future prices. There is some evidence that this is the case:

Anderson, Kellogg and Sallee (2011) examine survey data on individuals’ gasoline price

forecasts over 1993-2008 and determine that the average individual’s forecast is statistically

indistinguishable from a “no change” forecast.22,23

We estimate the regression equation with ordinary least squares and cluster the stan-

dard errors at the vehicle level to account for autocorrelation and other potential correlations

in the residuals.24 The theory suggests that a vehicles’ incentives should increase with its fuel

costs and decrease with the fuel costs of vehicles produced by competitors. The fuel costs of

other vehicles produced by the same manufacturer have no effect if demand is symmetric;

21Copeland, Dunn and Hall (2005) document that vehicle prices fall approximately nine percent over the
course of the model-year.

22Current prices do not always reflect expectations. One motivating example is Hurricane Katrina, which
temporarily stymied crude oil production and refinement, and created a wedge between oil prices and (dis-
tant) futures prices. Our regression results are robust to the exclusion of observations from August, Septem-
ber, and October 2005 from the data sample.

23The academic literature has sought to determine whether retail gasoline prices and crude oil prices
actually follow a random walk, without clear resolution (e.g., see Davis and Hamilton (2004); Geman (2007);
Hamilton (2009); Kilian (2009)). What is clear is that price changes are difficult to predict and that “no
change” forecasts perform well relative to forecasts based on futures prices and forecasts based on simple
econometric models (e.g., Alquist and Kilian (2010)). In our data, an OLS regression of fuel costs on lagged
fuel costs, eight lags of fuel cost changes, and the control variables shown in equation 7 yields a coefficient on
lagged fuel costs of 0.5719 (standard error of 0.0014). Given the critical values reported in Hamilton (1994,
chapter 17), this would seem to reject the hypothesis that fuel costs follow a random walk in our data. We
are wary of interpreting this too result too strongly, however, since our data cover a short sample period
relative to the data examined elsewhere.

24We have experimented with Tobit regressions that account for the fact that cash incentives are censored at
zero (i.e., incentives are never negative). Maximum likelihood routines have weaker small sample properties,
however, and the bevy of vehicle, week, and region fixed effects in the specification leads to multi-collinearity
problems in estimation. We are skeptical that censoring is problematic because we observe positive incentives
in more than 80 percent of the observations.

12



otherwise the implications of these fuel costs are theoretically ambiguous.25 Formally, the

theory provides the following three hypotheses: β1 ≥ 0, β2 ≤ 0, and β1 ≥ |β2|.

4.2 Quantifying the impact of gasoline prices

Of particular interest is the proportion of fuel cost changes that are offset by cash incentives.

Given regression results, the difference in responsiveness between two vehicles, j and i, can

be calculated as follows:

∂(ÎNCj − ÎNCi)

∂gp
= β̂1

(
1

mpgj
−

1

mpgi

)
+ β̂2


∑

k/∈Jj

ω̃2

jk

1

mpgk
−

∑

k/∈Ji

ω̃2

ik

1

mpgk




+β̂3


 ∑

l∈Jj , l 6=j

ω̃3

jl

1

mpgl
−

∑

l∈Ji, l 6=i

ω̃3

il

1

mpgl


 , (8)

where we have suppressed the week and region subscripts for simplicity. By focusing on

differences, we isolate the fuel cost channels through which gasoline prices affect cash incen-

tives. Gasoline prices fluctuations could also affect cash incentives due to changes in real

consumer income, production costs, or the desirability of used vehicles. These other effects

are controlled for but not estimated directly in our regression model, and they cancel when

the incentive derivatives are expressed in differences.26

We calibrate these differences against the differential impacts that gasoline prices have

on the cumulative fuel costs that consumers expect to incur over their vehicles’ lifetimes:

OFFSETji ≡
∂(ÎNCj − ÎNC i)

∂gp

/
∂(x̃j − x̃i)

∂gp
, (9)

where x̃j is a measure of cumulative fuel costs that we define as follows:

x̃jt =
Y∑

y=1

[(
1

1 + r

)y−1

∗MPY ∗
gpt

mpgj

]
. (10)

where Y is vehicle lifespan, r is the consumer discount rate, and MPY is the miles per year

that vehicles are driven. Following Greene (2010) and statistics calculated by the National

25We derive these relationships for the case of J = 3 in the working paper under mild regularity conditions.
26These effects are present if ∂γt/∂gpt 6= 0. Gicheva, Hastings, and Villas-Boas (2010) tests for income

effects using scanner data on grocery purchases in California over 2000-2005, and finds that a 100% increase
in gasoline prices leads to a 5-11% decrease in the net price paid per grocery item.
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Traffic Safety Administration (NHTSA 2006), we assume a vehicle lifespan of 14 years, that

cars are driven 12,061 miles per year, and that SUVs and Trucks are driven 13,436 miles

per year. We also assume a consumer discount rate of seven percent. Since the metric of

interest, OFFSETji, depends on these assumptions, we conduct sensitivity analysis using

discount rates of five and ten percent and vehicle lifetimes of ten and 18 years.

The ratio derived in equation 9 can be interpreted as the proportion of relative fuel

cost changes that manufacturers offset with cash incentives. A value of one would indicate

that manufacturers fully compensate consumers for changes in the relative fuel costs of

vehicles j and i, while a value of zero would indicate that manufacturers are not responsive

to the relative fuel costs of the two vehicles. To build intuition, consider two hypothetical

cars produced by different manufacturers. Car A gets 20 miles-per-gallon and car B gets

30 miles-per-gallon. With a gasoline price of $2.00 per gallon, the difference in expected

cumulative gasoline expenditures is $3,762.27 This gap increases to $4,703 for gasoline prices

of $2.50 per gallon. Thus, if the regression results indicate that a $0.50 increase in gasoline

prices induces the cash incentives of A to increase by $375 more than those of B, we would

calculate the proportion of relative fuel cost changes that are offset by cash incentives (the

“offset percentage”) as $375/($4703− $3762) = 40%.

4.3 Empirical weights

We approximate the weights using data on vehicle attributes. Our assumption is that the

degree of substitutability between vehicles decreases in the Euclidean distance between their

attributes. Or, stated more simply, that consumers tend to substitute among vehicles that

have similar characteristics. In industrial organization, the linking of product characteristics

to consumer substitution dates to Lancaster (1966), and seminal contributions use vehi-

cle characteristics to estimate demand elasticities in the automobile industry (e.g., Berry,

Levinsohn and Pakes (1995, 2004), Petrin (2002)). The critical distinction is that we make

assumptions regarding the relative importance of the vehicle characteristics, whereas more

structural approaches estimate the relative importance based on the data.

In our application, we treat each of the available vehicle characteristics – MSRP,

miles per gallon, horsepower, passenger capacity, and wheelbase – equally in the construc-

tion of the empirical weights.28 Formally, we take M vehicle attributes, which we denote

27Expected cumulative gasoline expenditures are $11,286 and $7,524 for the two vehicles, respectively.
28We also include 13 indicator variables for the segment of the vehicle. The car segments are subcompact,

compact, intermediate, luxury, sport, luxury high, and luxury sport. The SUV segments are compact,
intermediate, large, and luxury. The truck segments are small pick-up and large pick-up.
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zjm for m = 1, . . . ,M , and standardize each to have a variance of one. We then sum the

squared differences between each attribute to calculate the effective “distance” in attribute

space. We form initial weights as follows:

ω∗
jk =

1
∑M

m=1
(zjm − zkm)2

.

To finish, we set the initial weights to zero for vehicles of different types (i.e., cars, SUVs, and

trucks) and normalize such that the weights sum to one for each vehicle-period. We perform

this weighting procedure separately for vehicles produced by the same manufacturer and

vehicles produced by competitors to obtain ω̃2

jkt and ω̃
3

jkt, respectively. Thus, the weighting

scheme is based on the inverse Euclidean distance between vehicle attributes among vehicles

of the same type.29

In Table 3, we provide a matrix of competitor weights for eight selected 2005 model-

year vehicles – four large pickup trucks and four small pickup trucks. The elements in

each row are the weights used to predict the cash incentives for the vehicle listed at the

left of the row.30 The weights are for the week of January 3, 2005. As shown, vehicles

of the same segment typically have weights that are roughly an order of magnitude larger

than vehicles of different segments. To model the incentives on the Silverado, a large pick-up

truck, we place weights of 0.0938, 0.1110, and 0.0545 on the F-150, the Ram, and the Tundra

(all large pickups) and weights of 0.0033, 0.0203, 0.0009 on the Ranger, the Dakota, and

the Tacoma (all small pickups). There is substantial variation in the weights that vehicles

within the same segment receive. The Colorado and the Tacoma appear as particularly

close competitors due to similarity in their attributes: the GM Colorado has 24.3 MPG, 175

horsepower, 111” wheelbase, passenger, and an MSRP of $15,095, while the Toyota Tacoma

has 24.3 MPG, 164 horsepower, 109” wheelbase, and an MSRP of $13,415. Neither is as

close to the Dakota, another small pickup truck, because the Dakota has 19.3 MPG, 210

horsepower, 131” wheelbase, and an MSRP of $19,885.31

29Although the initial weights are constant across time for any vehicle pair, the final weights vary due to
changes in the set of vehicles available on the market.

30Three properties of the matrix are readily apparent: First, the matrix has a block diagonal structure
because vehicles produced by the same manufacturer receive a competitor weight of zero. Second, the matrix
is asymmetric because the weighting scheme does not impose symmetry. Finally, the weights do not sum
to unity across rows because the vehicles compete with four other 2005 model-year trucks, as well as with
vehicles from the 2004 model-year. The omitted 2005 model-year trucks include the GM Canyon, the GM
Sierra, the GM Avalanche, and the Ford F-150 Supercrew.

31All of the pickup trucks shown have a passenger capacity of three.
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Table 3: Matrix of Competitor Weights for Selected Model-Year 2005 Pickup Trucks

Vehicle Segment Silverado Colorado F-150 Ranger Ram 1500 Dakota Tundra Tacoma

GM Silverado Large 0 0 0.0938 0.0033 0.1110 0.0203 0.0545 0.0009

GM Colorado Small 0 0 0.0026 0.1675 0.0009 0.0767 0.0544 0.2407

Ford F-150 Large 0.0370 0.0022 0 0 0.0431 0.0216 0.1455 0.0008

Ford Ranger Small 0.0013 0.1169 0 0 0.0008 0.0588 0.0035 0.0527

Chrysler Ram Large 0.1642 0.0024 0.1302 0.0031 0 0 0.0872 0.0009

Chrysler Dakota Small 0.0014 0.0093 0.0031 0.0102 0 0 0.0051 0.0029

Toyota Tundra Large 0.0163 0.0021 0.2626 0.0027 0.0176 0.0217 0 0

Toyota Tacoma Small 0.0014 0.6412 0.0024 0.2010 0.0009 0.0636 0 0
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The appropriateness of treating each vehicle characteristic as an equal driver of con-

sumer behavior is not clear a priori and, furthermore, weights based on observed char-

acteristics likely understate the competitive influence of vehicles with popular unobserved

characteristics. We construct a number of alternative weighting schemes to assess the sensi-

tivity of the regression results. First, we constructs weights that exclude each of the vehicle

characteristics in turn. Second, we examine equal weights across all vehicles of the same

segment (i.e., compact car or luxury SUV), equal across vehicles of the same type (i.e.,

cars, SUVs, trucks) and equal weights across all vehicles. We discuss the results of these

robustness checks in Section 5.2.

4.4 Identification

We estimate the average responsiveness of vehicles’ cash incentives to their fuel costs, the

fuel costs of vehicles produced by competitors, and the fuel costs of other vehicles produced

by the same manufacturer.32 The fuel cost coefficients are identifiable even in the presence

of time, vehicle, and region fixed effects because changes in the gasoline price over time (and

across regions) affect the fuel costs of vehicles differentially. That is, identification rests on

the observation that the fuel costs of fuel efficient vehicles are less responsive to changes in

the gasoline price than the fuel costs of fuel inefficient vehicles.

It follows that the empirical weights are central to identification – the weights determine

how the fuel cost regressors incorporate heterogeneity in fuel efficiency. To build intuition,

suppose that there are three vehicles produced by a different manufacturers. Vehicles A

and B are identical compact cars while vehicle C is a luxury car. If, in the determination

of A’s cash incentive, the fuel costs of B receive a weight of one and the fuel costs of C

receive a weight of zero, then the fuel cost of A is collinear with the average fuel costs of A’s

competitors and the fuel cost coefficients are not be separably identifiable. However, if the

fuel costs of B receives slightly less weight than one, with C receiving the remaining weight,

then the fuel cost of A differs from the average fuel costs of A’s competitors and the fuel

cost coefficients are separably identifiable.33 We have established that the optimal weighting

scheme weights B and C according to their competitive significance.

32Heterogeneity likely exists in these effects across vehicles and time periods. This is evident, for example,
in the vehicle-time-specific coefficients of equation 4, which are combinations of the underlying structural
demand parameters. We use subsample regressions to capture some of this heterogeneity.

33This identification strategy requires rich variation in the data – otherwise the high degree of collinearity
between fuel costs and competitor fuel costs could hinder estimation. As we develop in Section 5, the data
we examine do indeed provide sufficient variation, as evidenced by the precision of the point estimates and
the robustness of the results across different specifications and samples.
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Ordinary least squares regression based on equation 6 generates unbiased estimates

provided that the regressors are uncorrelated with the vehicle-period-region specific residual

(which captures deviations in demand and production costs). This condition is reasonable

given the set of fixed effects included in the specification. Consider the potential feedback

between automobile demand and gasoline prices. The strength of demand likely has a small

effect on the global price of oil but the time fixed effects account for the overall effect, so

only changes in the distribution of demand (e.g., greater demand for efficient vehicles) could

create bias. Fuel costs are the most obvious source of such relative demand changes, by

incorporating fuel costs as regressors, they are removed from the residual. Analogously,

manufacturers likely adjust vehicle characteristics with the gasoline price, but the inclusion

of vehicle fixed effects restricts identification to changes in the gasoline price that occur

within the model-year; and characteristics are fixed within the model-year.

5 Empirical Results

5.1 Main regression results

We present the main regression results in column 1 of Table 4. The table also shows results

when week fixed effects or vehicle fixed effects are excluded (columns 2 and 3), when regional

variation in cash incentives and gasolines prices is discarded (column 4), and when the

dependent variable is constructed as the mean cash incentive rather than the maximum cash

incentive (column 5). In each case, we run OLS and cluster the standard errors at the vehicle

level to account for heteroscedasticity, autocorrelation, and any other correlations among the

residuals of each vehicle.

We discuss the main results first. The own fuel cost coefficient of $44,535 is positive,

as predicted by theory, and statistically significant. This captures the intuition that man-

ufacturers partially compensate consumers for higher gasoline expenditures. Considered in

isolation, this coefficient would indicate that a $1.00 increase in the gasoline price would

increase cash incentives by $4,454 for a vehicle with fuel costs of $0.10 per mile. But the co-

efficient should not be considered in isolation. As shown, the competitor fuel cost coefficient

of −$43,318 is negative, also as predicted by theory, and precisely estimated. This indicates

that increases in competitors’ fuel costs motivate manufacturers to reduce cash incentives.

The net effect of these two channels depends on the fuel efficiency of a vehicle relative to

its rivals; for a vehicle with fuel costs of $0.10 per mile and average competitor fuel costs of

$0.10 per mile, the coefficients imply that the cash incentive would increase only $122 due to
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Table 4: Cash Incentives and Fuel Costs

National Mean
Maximum Incentive + Full Sample Sample Incentive

Variables (1) (2) (3) (4) (5)

Selected Coefficients and Standard Errors

Own fuel cost 44,535*** 37,924*** 10,810** 50,841*** 27,238***
(12,475) (12,745) (5,132) (14,034) (8,638)

Competitor -43,318*** -41,422*** -12,196** -41,630** -26,731***
fuel cost (14,100) (13,162) (6,199) (18,494) (9,734)

Same-firm -516 -255 14,042*** -1,171 -998
fuel cost (2,867) (3,046) (4,511) (2,943) (2,245)

Specification of Fixed Effects

Week yes no yes yes yes
Vehicle yes yes no yes yes
Region yes yes yes no yes

Mean Offset

40% 34% 13% 45% 24%

R2 0.6200 0.6064 0.1202 0.6496 0.5624
Results from OLS regressions. The dependent variable in columns 1-4 is the size of the
maximum cash incentive and the dependent variable in column 5 is the size of the mean
incentive. There are 230,835 observations at the vehicle-week-region in columns 1-3 and
column 5, and 46,167 observations at the vehicle-week level in column 4. All regressions
include third-order polynomials in the vehicle age (i.e., weeks since the date of initial
production), the average age of vehicles produced by different manufacturers, and the
average age of other vehicles produced by the same manufacturer. Standard errors are
clustered at the vehicle level and shown in parenthesis. Statistical significance at the
10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
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a $1.00 increase in the gasoline price.34 Although this net effect is positive, as predicted by

theory, it is not statistically significant. Finally, the same-firm fuel cost coefficient is small

and not statistically significant, consistent with roughly symmetric demand.

Of particular interest is the proportion of relative fuel cost changes that are offset

by cash incentives. We calculate this for each vehicle-pair in the data. To create a single

summary statistic, we first calculate the weighted average offset between vehicle j and all

other vehicles produced by competitors, using the empirical weights to focus more on vehicles

with a high degree of substitutability:

OFFSET j =
J∑

i=1

ω̃2

jiOFFSETji, (11)

where OFFSETji is defined in equation 9. We then take the mean across vehicles to form

the “mean offset” among vehicles produced by competing manufacturers:

OFFSET =
1

J

J∑

j=1

OFFSET j. (12)

This statistic measures the proportion of fuel costs changes that are offset by cash incentives.

An offset of one would indicate that manufacturers fully compensate consumers for changes

in fuel costs, on average, while an offset of zero would indicate that manufacturers are not

responsive to fuel cost changes.35

The main results generate a mean offset of 40 percent. The bootstrapped standard

error is 11.4 percent, based on 10,000 simulation draws, and the corresponding 95 percent

confidence interval is 21.2% to 58.6%.36 In this offset calculation, we assume a discount rate

of seven percent and an expected vehicle lifespan of 14 years. Table 5 provides sensitivity

checks for discount rates of five, seven, and ten percent and an expected lifespan of ten, 14,

and 18 years. As shown, the mean offset varies from 31 percent to 56 percent.

An alternative metric is the net effect of gasoline prices on cash incentives that accrues

34The net effect for such a vehicle is simply β̂1 − β̂2 = 0.10 ∗ ($44, 535− $43, 318) = $122.
35We calculate the offset percentage using vehicles in the data for the week of December 25, 2006. This

offset calculation explicitly takes into account the fact that manufacturers may offset changes in relative
operating costs differently for vehicles with greater consumer substitutability than for vehicles that are less
close substitutes. In fact, we find that manufacturers offset a greater percentage of relative operating cost
for more substitutable vehicles than they do for less substitutable vehicles, as might be expected in the
theoretical model.

36The standard error may be a lower bound because vehicle lifespan and usage rates are treated as
deterministic.
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Table 5: Sensitivity Analysis of Mean Offsets

Discount Rate
Vehicle Life 5% 7% 10%

10 years 46% 50% 56%

14 years 36% 40% 47%

18 years 31% 35% 42%
Based on the regression coefficients
that appear in column 1 of Table 4.

through the fuel cost variables.37 We calculate the net effect of a one dollar increase in the

price of gasoline for each vehicle-week-region observation in the data using the regression

coefficients from the baseline specification (column 1 of Table 4). We then aggregate the

predictions to construct the mean net effect of each MPG quartile per region-week. We find

that a one dollar gasoline price increases the mean incentive of the least efficient quartile

by $248. The mean incentives of the second and third least efficient quartile increase by

$126 and $13, respectively, and the mean incentive in the most efficient quartile decreases by

$92. This is consistent with the intuition that adverse gasoline price shocks reduce demand

for fuel inefficient vehicles and raise demand for fuel efficient vehicles. Comparing across

quartiles, the markup on vehicles in the most efficient quartile increase by $340 relative to

the markup on vehicles in the least efficient quartile.

These statistics have the added benefit of being directly comparable to Busse, Knittel,

and Zettelmeyer (2011), which examines a ten percent sample of automobile purchases over

1999-2008 and estimates the conditional mean effect of gasoline prices on the transaction

prices of vehicles in each MPG quartile. They find that a one dollar increase in the gasoline

price lowers average transaction prices by $250 in the least efficient quartile, $96 in the

second least efficient quartile and $11 in the third least efficient quartile, but increases average

transaction prices by $104 in the most efficient quartile. These results are similar to our own,

both in terms of sign and magnitude, and we interpret them as a useful corroboration.38

We now return to Table 4 and explore the implications of some basic specification and

37As we discuss in Section 4.2, the full net effect is not identifiable given our estimation strategy because
the time fixed effects absorb any variation due to income effects, production cost effects, or used vehicles.

38The cash incentives we examine tend to be somewhat sticky, in that there is a tendency for the incen-
tives of given vehicles to be constant over several weeks and then jump, as manufacturers incur menu and
advertising costs. The similarity between our results and those of Busse, Knittel, and Zettelmeyer (2011)
helps rule out serial correlation as a major source of inconsistency in estimation.
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sample choices. As shown in column 2, the fuel cost coefficients are not materially different

than the baseline results when week fixed effects are omitted from the specification. By

contrast, when vehicle fixed effects are excluded, the own and competitor fuel cost coefficients

are much smaller, the coefficient on same-firm fuel costs enters meaningfully, and the mean

offset drops to 13 percent. Of course, vehicle characteristics are important determinants of

demand and production costs and the exclusion of vehicle fixed effects could lead to bias.

The “national sample,” which uses national gasoline prices and nationally-available cash

incentives, produces fuel costs coefficients that are similar to the baseline coefficients and a

mean offset of 45 percent. Finally, when the dependent variable is constructed as the mean

incentive, the fuel cost coefficients are somewhat smaller and the mean offset is 24 percent.39

5.2 Alternative Empirical Weights

The empirical weights that we employ in the baseline results follow from the assumption

that the degree of substitutability between vehicles can be approximated by evaluating the

similarity of the vehicles’ attributes. We now examine how the results change under alter-

native weighting schemes, namely equal weights across all vehicles of the same segment (i.e.,

compact car or luxury SUV), equal across vehicles of the same type (i.e., cars, SUVs, trucks)

and equal weights across all vehicles.40

Table 6 presents the results. Columns 1-3 show the results obtained from each alterna-

tive weighting scheme, in turn, and columns 4-6 show the results obtained from horse-races

between the baseline weights and each of the alternative weighting schemes. As shown,

when weights are equal among all vehicles of the same segment (column 1) the fuel cost

coefficients are similar to those obtained from the baseline weights. The fuel cost coefficients

are somewhat smaller when weights are equal among all vehicles of the same type (column

2) but the coefficients remain statistically significant. The mean offset is 43 percent and 24

percent in these two columns, respectively. By contrast, when weights are equal among all

vehicles regardless of segment or type, the competitor fuel cost coefficient is close to zero

and not statistically significant. The implied mean offset is 13 percent.

39We view the maximum incentive as the more appropriate dependent variable because consumers typically
select among the available incentives (when multiple incentives are available). If the maximum incentive is
indeed the object of interest then one would expect mean incentives be less responsive to fuel costs.

40We also construct a series of weights, following the procedure outlined in Section 4.3, which exclude
each of the observed vehicle characteristics in turn. The resulting fuel cost and offset percentage generally
are quite similar to those of the baseline results. The exception is wheelbase – when it is excluded from the
weights the fuel costs coefficients are smaller and the implied offset percentage falls to 18 percent. Wheelbase
is a standard measure of vehicle size, an important determinant of consumer choice.
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These patterns are precisely what one should expect, provided that competition be-

tween vehicles is indeed localized in attribute space, because the inclusion (or over-weighting)

of distant competitors introduces measurement error that biases regression coefficients to-

ward zero. As an example, consider the cash incentives of a Toyota Prius. If competition is

localized then potential consumers of the Prius are selecting among relatively fuel efficient

vehicles. Thus, Toyota should adjust its Prius incentives with the fuel costs of efficient ve-

hicles (e.g., the Ford Focus) but not the fuel costs of inefficient vehicles (e.g., the Hummer).

The inclusion of inefficient vehicles would then create measurement error and the estimated

coefficients would be too small in magnitude.41 By contrast, weighting efficient vehicles more

heavily would reduce measurement error and produce more accurate estimates.

To inform whether competition is indeed localized in attribute space, we conduct horse

races between the baseline weights and the alternative weighting schemes. The results are

shown in columns 4-6 of Table 6. Column 4 includes two sets of competitor and same-

firm fuel cost variables, constructed respectively with the baseline weights and equal weights

among vehicles of the same segment. As shown, the own fuel cost coefficient is similar to that

of the baseline regression (Table 4, column 1). Of more interest are the two competitor fuel

costs coefficients. Since each is about half of what is estimated in the baseline regression,

the combined effect is similar in magnitude. The two coefficients are jointly statistically

significant at the one percent level though neither is significant alone. In columns 5 and 6,

the competitor fuel cost variables constructed with the baseline weights strictly dominate the

variables constructed with equal weights among vehicles of the same type and equal weights

among all firms, respectively. In both cases, the net effect of competitor fuel costs is similar

to that of the baseline regression. We interpret these results as evidence that more localized

weighting schemes (e.g., the baseline weights and equal weights within segment) have more

explanatory power than more global weighting schemes, and that the substitutability of

vehicles increases in the similarity of attributes.

41The econometric intuition is standard: since variation in the Hummer’s fuel costs exists but does not
correlate strongly to Prius incentives, weighting the Hummer heavily would lead to the inference that Prius
incentives are unresponsiveness to competitor fuel costs.
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Table 6: Regression Results with Alternative Weighting Schemes

Variables (1) (2) (3) (4) (5) (6)

Own fuel cost 39,346*** 28,015*** 18,217*** 48,504*** 45,922*** 45,377***
(10,277) (7,020) (5,504) (12,261) (12,778) (12,358)

Competitor fuel cost -20,560 -36,248* -43,896***
baseline weights (19,249) (20,062) (16,620)

Same-firm fuel cost -642 -172 86
baseline weights (2,855) (2,864) (2,856)

Competitor fuel cost, -29,701*** -21,415
equal weights in segment (11,374) (14,689)

Same-firm fuel cost, 7,442 -5,644
equal weights in segment (8,122) (8,205)

Competitor fuel cost, -20,873** -4,886
equal weights in type (8,848) (12,273)

Same-firm fuel cost, -8,054 -6,271
equal weights in type (8,540) (8,418)

Competitor fuel cost, -284 13,711
equal weights (13,756) (15,285)

Same-firm fuel cost, -17,026 -15,170
equal weights (12,978) (12.749)

Mean Offset

43% 24% 13% 41% 40% 49%

R2 0.6204 0.6194 0.6189 0.6206 0.6201 0.6203
Results from OLS regressions. The dependent variable is the size of the maximum cash incentive and the sample includes
230,835 vehicle-week-region observations. All regressions include vehicle, time, and region fixed effects, as well as third-
order polynomials in the vehicle age (i.e., weeks since the date of initial production), the average age of vehicles produced
by different manufacturers, and the average age of other vehicles produced by the same manufacturer. Standard errors
are clustered at the vehicle level and shown in parenthesis. Statistical significance at the 10%, 5%, and 1% levels is
denoted by *, **, and ***, respectively.
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5.3 Additional Regression Results

First, we explore heterogeneity in the responsiveness of cash incentives to the fuel cost

variables using sub-sample regressions for cars, SUVs, and trucks.42 Table 7 shows the

results. For cars, the own fuel cost coefficient is substantially larger than the coefficient

obtained from full sample (see column 1 of Table 4), while the competitor and same-firm

fuel cost coefficients are similar in magnitude. Together, these coefficients imply a mean

offset of 61 percent. For SUVs, the fuel cost coefficients are similar in magnitude to those

obtained from the full sample and the mean offset of 30 percent is slightly smaller. Finally,

for trucks, the fuel costs coefficients roughly halve in magnitude relative to the full sample,

statistical significance is not maintained, and the mean offset is only 18 percent. Thus,

the results indicate that the cash incentives of cars appear to be more responsive to fuel

costs than those of SUVs, which appear to be more responsive than those of trucks. Our

estimation approach does not provide a clean explanation for this pattern, but we speculate

that it could be due to differences in the intensity of competition (e.g., the car industry

could be more densely populated in characteristic-space) or differences in preferences among

consumers of the vehicle types (e.g., car buyers could be more sensitive to fuel expenditures).

Second, we explore the timing implied by the baseline regression specification, which

implicitly imbeds the assumptions that consumers use current gasoline prices to forecast

future prices and that cash incentives adjust immediately with current gasoline prices. Col-

umn 1 of Table 8 provides results from an alternative specification in which cash incentives

are regressed on fuel cost variables constructed as averages over the previous four weeks. As

shown, the own and competitor fuel cost coefficients are slightly larger than those produced

by the baseline specification, and the mean offset rises to 55 percent. In column 2, we pair

the “current” fuel cost variables with the “lagged” fuel cost variables. The own fuel cost

coefficients are each roughly half the size of the fuel cost coefficient of column 1, so the

combined effect is similar, and the same is true for the competitor fuel cost coefficients. The

results are suggestive that consumers construct forecasts using recent gasoline prices and

that manufacturers respond with some delay to gasoline price fluctuations. The larger offset

percentages indicate that our baseline results may be conservative.

42Heterogeneity in responsiveness is suggested by the theoretical model. For instance, consider the vehicle-
specific coefficients of equation 4, each of which is a combination of the underlying structural demand
parameters. We cannot fully estimate these heterogeneous effects because the 3J coefficients per region-
week are not identifiable with J observations per region-week, and our baseline regressions estimate the
average responsiveness of cash incentives to the fuel cost variables.
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Table 7: Regression Results for Vehicle Type Subsamples

Variables Cars SUVs Trucks

Own fuel cost 62,738*** 43,036** 25,588
(21,185) (19,012) (21,399)

Competitor -44,781* -48,471** -19,464
fuel cost (24,323) (21,860) (22,170)

Same-firm -5,840 5,402 -3,154
fuel cost (6,092) (5,547) (2,216)

Mean Offset

61% 30% 18%

R2 0.5928 0.6495 0.6593
Observations 121,860 82,600 26,375
Results from OLS regressions. The dependent variable is
the size of the maximum cash incentive and the units of
observation are at the vehicle-week-region level. All re-
gressions include vehicle, time, and region fixed effects,
as well as third-order polynomials in the vehicle age (i.e.,
weeks since the date of initial production), the average age
of vehicles produced by different manufacturers, and the
average age of other vehicles produced by the same manu-
facturer. Standard errors are clustered at the vehicle level
and shown in parenthesis. Statistical significance at the
10%, 5%, and 1% levels is denoted by *, **, and ***, re-
spectively.
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Table 8: Regression Results with Lagged Fuel Costs

Variables (1) (2)

Fuel cost 22.33**
(10.67)

Competitor fuel cost -18.12
(12.27)

Same-firm fuel cost 0.75
(1.99)

Lagged fuel cost 47.62*** 25.70**
(13.45) (11.97)

Lagged competitor fuel cost -50.05*** -30.34**
(15.10) (12.48)

Lagged same-firm fuel cost -0.67 -1.49
(3.17) (3.22)

Mean Offset

54% 55%

R2 0.6201 0.6214
Results from OLS regressions. The dependent variable is the size
of the maximum cash incentive (in thousands). There are 230,835
observations, representing 546 vehicles, at the vehicle-week-region
level. Lagged variables are constructed as the mean over the pre-
vious four weeks. All regressions include vehicle, time, and region
fixed effects, as well as third-order polynomials in the vehicle age
(i.e., weeks since the date of initial production), the average age of
vehicles produced by different manufacturers, and the average age
of other vehicles produced by the same manufacturer. Standard
errors are clustered at the vehicle level and shown in parenthesis.
Statistical significance at the 10%, 5%, and 1% levels is denoted by
*, **, and ***, respectively.
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6 Implications for Discrete Choice Estimation

Our results indicate that manufacturers adjust their cash incentives in response to changes

in the fuel costs of their vehicles and the fuel costs of vehicles produced by their competitors.

This raises the question of whether the discrete choice literature, which typically does not

control for these supply-side responses, provides consistent estimates of consumer demand

for fuel economy. Intuition suggests that bias exists. For instance, our results show that

when gasoline prices rise, manufacturers respond with cash incentives that damp consumer

substitution toward fuel efficient vehicles, partially compensating consumers for the differ-

ential impact of gasoline prices. If cash incentives are unobserved in the data, the damped

consumer shift could be mistaken for consumers being unresponsive to gasoline prices.

In this section, we formalize this logic and approximate the magnitude of bias. The

extant literature largely relies on random utility models such as the nested logit model (e.g.,

Goldberg (1998); Gramlich (2010); Allcott and Wozny (2010)) and the random coefficients

logit model (e.g., Bento et al (2009), Jacobsen (2010), Beresteanu and Li (2011)). We focus

on the nested logit model, which yields a linear expression for vehicle market shares:

log(sjt/s0t) = ψp(pjt − p0t) + ψx(xjt − x0t) + σ log(sjt/gt) + κj + δt + µjt, (13)

where sjt is the share of vehicle j, and sjt/gt is the share of vehicle j within nest g. The

outside good, which is often interpreted as the option to purchase a used vehicle, is included

as vehicle j = 0. The main regressor of interest, xjt, represents expected cumulative fuel

expenditures. The remaining terms are defined as in Sections 3 and 4.

Price can be decomposed into a constant portion (e.g., MSRP) and a time-varying

negotiated discount (e.g., cash incentives). Denoting the constant portion of price as Mj

and the discount as djt, the model can be re-written as follows:

log(sjt) = ψxxjt + σ log(sjt/gt) + κ∗j + δ∗t + µ∗
jt, (14)

where κ∗j = κj + ψp(Mj −M0) is a composite vehicle fixed effect that absorbs the influence

of time-invariant prices, δ∗t = δt + log(s0t) − ψpp0t − ψxx0t is a composite time fixed effect

that absorbs the influence of the outside good, and µ∗
jt = µjt − ψp(djt − d0t) is a composite

error term that includes discounts. The vehicle fixed effects can be replaced with MSRP and

other vehicle characteristics when variation in the data is more limited.

This formulation makes it apparent that the main regressor of interest, the expected

cumulative fuel cost, is correlated with the composite error term due to the supply-side dis-
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counting behavior of manufacturers. This produces inconsistency in estimators that require

orthogonality between fuel costs and the residual; and inconsistency exists even if vehicle

and period fixed effects are included. These fixed effects account for the average price of

each vehicle and the average effect of fuel costs on vehicle prices, respectively, but do not ac-

count for differential impact of fuel costs on discounts across vehicles. Standard econometric

manipulations yield an analytical expression for the bias of OLS estimates:

ψ̂x
p
→ ψx


1−

Cov(xjt, djt| sjt/gt, κ
∗
j , δ

∗
t )

Var(xjt| sjt/gt, κ∗j , δ
∗
t )︸ ︷︷ ︸

bias term


 . (15)

In the special case of the standard logit (i.e., σ = 0), the bias term simplifies to the covariance

between fuel costs and discounts, conditional on the fixed effects (but not on shares within

nest) and normalized by the variance of fuel costs. This is obtainable as the regression

coefficient from an OLS regression of discounts on expected cumulative fuel costs, controlling

for vehicle and time fixed effects. Sales information is unneeded.

We turn to the data for an empirical estimate of the bias term in standard logit models

of demand. We regress the maximum incentive for a given vehicle-week observation on the

measure of cumulative fuel costs that we develop in Section 4.2, controlling for vehicle and

time fixed effects. We use the national sample of Table 4 (column 4) because discrete choice

models typically use national data. We estimate with OLS and cluster the standard errors

at the vehicle level. The resulting fuel cost coefficient of 0.1372 (standard error of 0.0537)

indicates a bias term of 13.7 percent.43

We suspect that bias would be exacerbated in the more general nested logit case, which

features more intense localized competition. Here the bias term must be conditioned on the

within-nest market shares (sjt/gt). This makes empirical estimates infeasible in the absence

of data on vehicle sales and, instead, we attempt to construct upper bounds by estimating

the bias that would arise in an “extreme” model within which consumers never substitute

across vehicles types but exhibit logit behavior within type. To this end, we regress cash

incentives on cumulative fuel costs and the fixed effects, separately for cars, SUVs, and

trucks. The resulting fuel cost coefficients are 0.7796 (standard error of 0.1714) for cars,

0.2486 (standard error of 0.1034) for SUVs, and 0.1745 (standard error of 0.1399) for trucks.

This suggests wide range of possible bias for nested logit models, in which some consumer

43This is still an approximation of the bias in a logit model, since in our regression there is one observation
per vehicle-week, while in most discrete choice analyses observations will be weighted by sales.
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substitution across nests is incorporated.

This bias is difficult to confront. Instrumental variables methods, such as two stage

least squares, are inapplicable because the unobserved manufacturer price responses are

literally functions of the observed fuel costs. It follows that any instrument with power

is likely invalid.44 And relying on regional variation in gasoline prices rather than inter-

temporal variation in gasoline prices (e.g., as in Bento et al (2009)) may not suffice because

manufacturers often vary their cash incentives at the local and regional level. Thus, we

suspect the most promising path for discrete choice estimation involves the acquisition of

high quality transaction price data, such as that of Busse, Knittel, and Zettelmeyer (2011).45

Alternatively, interpretation can be softened. This is the approach of Klier and Linn (2010a),

which estimates an regression along the lines of equation 14 and interprets the regression

coefficient as a reduced-form estimate of how fuel cost changes affect vehicle sales.

7 Conclusion

We provide empirical evidence that automobile manufacturers adjust relative vehicle prices

in response to changes in the price of retail gasoline. In particular, we show that the vehicle

incentives tend to increase in their own fuel costs and decrease in the fuel costs of their

competitors. The net effect is such that manufacturers offset through changes in relative

incentives 40% of the change in relative fuel costs between any pair of vehicles. These

differential price changes should incent firms investment in fuel economy research and design

as gasoline prices increase or with the implementation of a gas tax. Additionally, we find

that manufacturers’ price responses may lead to downward bias of at least 13% in some

discrete choice estimates of consumer demand for fuel economy. Both of these effects lead

us to believe that gas taxes will be more effective at improving fleet fuel economy than

previously suggested. The results do not speak, however, to the optimal magnitude of any

policy responses; we leave that important matter to future research.

44This statement might be too strong insofar as it assumes perfect knowledge on the part of manufactur-
ers. Variables that affect consumer fuel cost forecasts and are unobserved by manufacturers could be both
powerful and valid. Whether such instruments can be found is another matter.

45The use of transaction prices in discrete choice models is not without difficulty because estimation
requires a price for every vehicle considered not just each vehicle purchased. We refer the reader to Langer
(2011) for one approach to dealing with this problem.
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