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A1. Illustrative Simple Case of our Model

To illustrate the value of dynamic enforcement, we present a simple, special
case of our general model. For this special case, we assume a two-period model
with β = 1. In both periods, a single new violation occurs with probability p.
Violations are costly to the regulator in that they may result in emissions, but
costless to the plant. Inspections occur with probability I(Ω) = 1, are costless
to the regulator and plant, and perfectly reveal the presence of a violation. The
regulator assigns the plant to compliance if it has 0 outstanding violations; reg-
ular violator status if it has 1 outstanding violation; and HPV status if it has 2
outstanding violations. We assume that the signals for violations and fines are
the same: e1

t = e2
t , and indicate the number of outstanding violations. Note that

e1
1 ∈ {0, 1} and e1

2 ∈ {0, 1, 2}. The remaining signals follow from the above de-
scription of the status transitions, with e3

t = 1{e1
t = 0}, e4

t = 1{e1
t = 1}, and

e5
t = 1{e1

t = 2}.
A period 1 investment, X1 = 1, clears a period 1 violation with probability

q; violations are never cleared without investment. The pollution cost to the
regulator is cEe

1
t at period t, for some marginal pollution damage parameter cE .

The regulatory state records the history of investments and violations. Thus, for
example, at period 2, the regulatory state after the inspection is Ω̃2 = (X1, e

1
1, e

1
2).

Finally, the per-period objective function to the plant is −θXXt − Fine(Ωt, e
1
t ),

where θX is the cost of investment. The regulator minimizes the sum over the
two periods of cEe

1
t , θ

XX, and its cost of assessing fines.
We allow the regulator to pre-commit to an enforcement strategy and focus on

the case with a period 1 violation—so e1
1 = 1—as this is the only case where the

regulator might want to incentivize period 1 investment. The simplest policy that
a regulator could choose would be a linear fine policy cF e

1
t . When θX is known

and contractable and the cost of investment is sufficiently low relative to other
costs, the regulator incentivizes period 1 investment by choosing the lowest cF
that would compel the plant to invest.

With a linear fine policy, the regulator has to issue fines for the period 1 vio-
lations even though this has no effect on investment. Thus, this fine lowers the
regulator objective function. An alternative is for the regulator to choose a static
escalation mechanism: it could fine only when e1

t = 2, which would remove the
cost of fining when e1

t = 1 but the plant has not had a chance to invest, and
would still incentivize investment in period 1. For this reason, the regulator can
incentivize investment for the same values of θX as the linear fine policy with
lower expected fines, thereby adding surplus. Although the model is dynamic,
this escalation mechanism is not explicitly dynamic (since it does not depend on
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the regulatory state Ωt, but only on the current number of outstanding violations,
e1
t ). It increases marginal deterrence in period 2 since it will result in no fines in

period 1. Because expected fines are lower, the regulator will further choose to
incentivize investment for more values of θX , thereby adding further surplus in
some cases.

A dynamic escalation mechanism would increase surplus relative to the static
escalation mechanism. In this case, the regulator could fine when e1

t−1 > 0,
Xt−1 = 0, and when it wants to incentivize investment. Choosing this policy for
the same set of θX as above will mimic the same investment incentives but with
no fines paid in equilibrium (since plants whose investment does not succeed in
returning the plant to compliance are not fined), and hence no fine costs. Thus,
the regulator will choose to incentivize investment for even more values of θX .

If instead of a single θX the regulator faces a distribution of θX values and
cannot contract on θX , dynamic enforcement also adds value by better selecting
the set of plants which it incentivizes to invest. For simple investment cost type
distributions, the regulator will incentivize investment for more values of θX with
dynamic enforcement than with a static escalation mechanism or with linear fines.

Overall, our illustrative simple case shows that escalation mechanisms add value
by increasing the marginal deterrence for two violations relative to one. Dynamic
escalation mechanisms add more value by reducing equilibrium fines and by in-
creasing the set of actions over which the regulator can condition.

A2. Data Construction Details

ECHO Database Overview

The ECHO database is divided into a number of components. We principally
use four ECHO components: (1) the Facility Registry Service dataset, (2) the
Air Facility System Actions dataset, (3) the Air Program Historical Compliance
dataset, and (4) the High Priority Violator History dataset. We discuss each of
these components in turn.

First, the Facility Registry Service dataset is a master list of plants. For our
purposes, it provides address information and the six-digit North American In-
dustry Classification System (NAICS) industrial sector for each plant. Our anal-
yses control for the EPA region, the first two digits of the NAICS code, and the
expected gravity of violations based on industry and county. We keep seven in-
dustries with high pollution damages that we believe to have plants of broadly
comparable costs of investment and enforcement: the three manufacturing indus-
tries, mining and extraction, transportation, educational services (which includes
school buses), and utilities.

Second, the Air Facility System Actions (AFS) dataset (or Actions dataset for
short) records the history of regulatory actions taken by state, regional, and fed-
eral environmental regulators, from Q4:2006 through the Q4:2014.33 We use this

33The EPA transitioned to a new reporting system after 2014.
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dataset to create our base list of inspections, violations, fines, and investments.
Since this dataset is subject to federal minimum data requirements, we believe
it provides a relatively complete description of the regulatory action history for
each plant. One potential issue with our data is that some states were not re-
porting non-HPV violations prior to 2010.34 The EPA customer support staff
were not sure if the data had been corrected and suggested we review the data for
anomalous changes in the violation rate. We examined the data for changes in the
prevalence of violations in 2010 by performing a series of regressions of reported
violations on state or region dummies interacted with a dummy for post-2010.
We found no systematic evidence of an increase in reported violations, suggesting
that this error had been corrected ex post.

Each record in this dataset details a regulator action, such as an inspection, a
notice of violation, a fine, or the review of an investment in pollution abatement.
The unit of observation is the AFS ID, which indicates a polluting source. Each
record lists a calendar date and provides information on the related EPA pro-
gram35 and the penalty amount when the action is a fine.36 For each plant, we
combine EPA actions across all EPA programs to capture completely its regula-
tory enforcement status.

Third, the Air Program Historical Compliance dataset records the historical
compliance status for each plant and EPA program at the AFS ID and quarter
level. These data derive from a combination of self-reports by plants and regulator
inputs. We follow the literature (Laplante and Rilstone, 1996; Shimshack and
Ward, 2005) in treating the self-reported data as accurate.37 We use this dataset
to determine whether a plant is in compliance or a violator in any quarter. This
dataset provides a more direct measure of violator status than does the Actions
dataset, since the Actions dataset does not always indicate when a violation is
resolved. Since this dataset is at the plant / quarter level, we aggregate EPA
actions to this level and use this as the time period for our analysis. We also use
this dataset to determine whether a plant has shut down, dropping plants from
the sample once they have exited.

Fourth, the High Priority Violator History dataset records the dates at which a
plant receives or resolves a high priority violation. We use this dataset to record
the quarter of entry and exit from HPV status. Analogous to the Air Program
Historical Compliance dataset, this dataset provides the most direct measure of
HPV status.

34See https://echo.epa.gov/system/files/FRVMemoandAppxFinal3.22.10.pdf.
35The CAAA include many different statutes that address different dimensions of air pollution. The

EPA enforces different statutes through different programs.
36It is possible for plants to contest fines in court. However, Helland (2001) finds that fewer than 4%

of fines are successfully contested by plants, a number that is in keeping with our own analysis of the
Integrated Compliance and Information System’s (ICIS) Federal Enforcement and Case Data.

37The literature makes this assumption because the expected penalty from purposefully deceiving
regulators is far greater than the penalty for an emissions violation.
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Regulatory Actions and Outcomes

Compliance and violator statuses. During our sample period, the EPA’s
Air Program Historical Compliance dataset reported each plant’s compliance sta-
tus for every CAAA program. Since there is a CAAA program for each major
category of air pollutant, a plant can simultaneously be in violation of multiple
CAAA programs. We assume that a plant is a CAAA violator if it is a violator for
any CAAA programs. For each program, we classify a plant as being a violator if
compliance status is equal to “1” (in violation, no schedule), “6” (in violation, not
meeting schedule), “7” (in violation, unknown with regard to schedule), “B” (in
violation with regard to both emissions and procedural compliance), “D” (HPV
violation), “E” (federally reportable violation), “F” (High Priority Violator on
schedule), “G” (facility registry service on schedule), or “W” (in violation with
regard to procedural compliance).38

The Historical Compliance dataset also reports codes indicating an unknown
compliance status: “Y” (unknown with regard to both emissions and procedural
compliance), “0” (unknown compliance status), “A” (unknown with regard to
procedural compliance), and “U” (unknown by evaluation calculation). From our
discussions with the EPA, these codes arise when a plant has not been inspected
within the required time frame, but there has been no indication of a violation
by the plant. Given this, we code these plants as being in compliance.39 In
some cases, we observe a violation at some quarter t in the Actions dataset and
the plant is reported to be a violator at quarter t + 1 but not at quarter t. In
these cases, we assume that the reporting that indicated that the plant was in
compliance at quarter t was erroneous, and hence we record the plant as being in
violator status at quarter t.

We code all other plants—except those that are listed as HPVs in the High
Priority Violator History dataset—as being in compliance. Thus, we do not use
additional information on compliance in the ECHO database for some plants and
pollutants, such as continuous emissions monitoring system reports.

Inspections. The Air Facility System Actions dataset reports multiple types of
inspections, which we collapse into a single “inspection” variable. These include
on- and off-site full compliance evaluations conducted by either the federal or
state EPA, partial compliance evaluations, and stack tests. We also consider an
inspection to have occurred if the EPA issues a Section 114 letter for gathering
information from the plant. In some cases we observe multiple inspections in
the same quarter; e.g., if stack tests are conducted for multiple pollutants. Since
our inspection variable is dichotomous, we consider these tests together to be
equivalent to a single inspection.

Violations. The Actions dataset also reports violations. We define a violation
to be the issuance of a “Notice of Violation” (NOV). An NOV is defined as “a

38Although this list indicates both plants that are regular violators and HPVs, we determined HPV
status from the High Priority Violator History dataset, for greater accuracy.

39Evans (2016) also considers plants in unknown compliance status to be in compliance.
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notice sent by the State/EPA ... for a violation of the Clean Air Act.” There are
three codes that indicate an NOV in our data: “6A” (EPA NOV issued), “7A”
(notice of noncompliance), and “7C” (state NOV issued).40 In some cases, we
observe a violation at some quarter t in the Actions dataset but the plant is not
reported to be a violator in the Historical Compliance dataset at quarter t or t+1
and did not receive a fine at quarter t. We believe that these violations likely
reflect minor issues that are dissimilar to other violations, and hence we exclude
them from our analysis.

Plant Exits

The Historical Compliance dataset also allows us to understand when plants
shut down. Plants may have a compliance status of “9” (in compliance: shut
down). If we observe a plant in this status, we assume that it has exited. We
remove it from our sample for the quarter with this status and all subsequent
quarters.

Investment

Our data do not directly report investments or investment costs (unlike in
the Duflo et al., 2018, study of pollution in India, for instance). Instead, we
infer investments from the behavior of EPA regulators. We determine that an
investment occurred if we observe any of the following three types of events: (1)
the resolution of a major violation, (2) the issuance of a Prevention of Significant
Deterioration (PSD) permit, and (3) exit from HPV status. We now provide
detail on each of these categories.

First, the overwhelming majority of our investments come from codes that in-
dicate the resolution of a major violation. There are three codes in the Actions
database that we consider evidence of this type of investment: (1) “VR” or “vio-
lation resolved,” (2)“OT” or “other addressing action,” and (3) “C7” or “closeout
memo issued.” According to the November, 2008 Air Facility Systems National
Action Types–Definitions EPA document,41 “a violation is resolved when it is
addressed and a closeout memo has been issued, all penalties have been collected
and the source is confirmed to be in physical compliance.”42

Similarly, “other addressing action” is an addressing action for HPV cases with
criminal or civil action referrals. Finally, “a closeout memo is issued when a
violation is resolved with all penalties collected and the source is confirmed to be
in physical compliance.” Of the investments that are determined by a resolution
code, we observe “VR” for the overwhelming majority (77%). An additional 14%
of these investments are from “C7”, and the remaining 10% are from “OT.”

40See https://echo.epa.gov/files/echodownloads/AFS_Data_Download.pdf.
41Downloaded September 2014.
42Note that we do not always observe “VR” or other investment codes when plants return to compliance

from regular violator status. Thus, we allow for the possibility that plants can return to compliance from
regular violator status without an investment.
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Second, a PSD permit is required for new pollution sources or for major mod-
ifications of existing sources.43 While it is possible that major modifications of
existing sources may occur for reasons other than a plant attempting to return
to CAAA compliance, we believe that changes to a plant that were substantial
enough to warrant a new PSD permit issuance likely imply a major investment
in pollution abatement.

Finally, we also infer that an investment has occurred if a plant exits HPV
status, even if we do not observe one of these codes. We make this choice because
we believe that a major investment would have been necessary in order to resolve
the substantial violations that would have originally merited the determination
of HPV status as well as all outstanding violations.

To verify that our measure of investment does indeed capture investments in
pollution abatement capital equipment, we collected additional data from the
Texas Commission on Environmental Quality (TCEQ). The TCEQ data provide
information on the installation and removal of pollution control devices for all
plants covered by Texas Administrative Code, Title 30, Rule 101.10. This regu-
lation applies to plants with the highest emissions, which is a subset of plants in
Texas that are regulated by the EPA. The installation of control devices forms a
direct marker of an investment, corresponding to our definition.

We matched the Texas data manually to our base data using firm/regulated
entity name, city, and address. Although the set of plants that is regulated by
this statute is a subset of the set that show up in our EPA data, we are able
to match 1,044 out of 2,109 of the EPA plants in Texas to a plant in the TCEQ
data. In all, the TCEQ data contained 1,520 plants with a change in an emissions
source or abatement device during our period, so our 1,044 matched observations
represent 69% of these. (Note also that not every plant covered by this regulation
will have an abatement device and that the TCEQ data cover more industries
than the 7 in our study, but the TCEQ data do not report industry.) Overall,
we believe that our match rate is high enough to make meaningful statements
regarding the abatement device changes for larger plants in Texas.

We first investigated whether an investment in the EPA dataset correlated with
the installation of an abatement device in the TCEQ data. One issue is that the
timing of investment in the two datasets is somewhat different. On the one hand,
the EPA data record an indirect measure of investment that only appears in
the data once the EPA has confirmed that the violation has been resolved and
hence we might expect the EPA measure to lag the Texas measure. On the other
hand, the Texas measure of investment only occurs after TCEQ has recorded it
in their system following a plant visit, which is supposed to occur within a year of
the device installation. TCEQ also does not require self-reporting for abatement
devices. Thus, the TCEQ measure may lag the EPA measure.

Despite these limitations, we find a strong and significant relationship between
the EPA investment measure and the TCEQ abatement device installation mea-

43See https://www.epa.gov/nsr/prevention-significant-deterioration-basic-information.
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sure. Specifically, we found that 45% of EPA investments have a TCEQ abate-
ment device installation within four quarters conditional on the plant being ob-
served in the both datasets (and unconditionally, the figure is 29%). Similarly,
a regression of EPA investment on TCEQ abatement device installation within
four quarters gives a coefficient of 0.031 with a t-stat of 16.9.

We also used the TCEQ abatement device measure to determine whether addi-
tional EPA actions should be included in our measure of investment. We identified
three groups of actions that could plausibly be added: (1) an indicator for whether
a penalty was paid (C3); (2) an indicator for a violation being withdrawn (WD);
and (3) indicators for the EPA determining that the plant was no longer deemed
to be in violation due to a rule change or to the plant not being subject to the
rule (2L, 2M, NM, NN). Overall, we found only 18 of these actions, compared
to 1,094 EPA investments for plants in Texas. Of these 18, only 5 had a TCEQ
abatement device change within 4 quarters. Thus, we decided not to add these
codes to our definition of investment.

Finally, we investigated whether the installation of an abatement device in com-
pliance in the TCEQ data predicted avoidance of violator status. Specifically, we
regressed exit from compliance on recent TCEQ abatement device installation,
defined as a TCEQ abatement device installation in the current quarter or within
the previous four quarters. We find that, similar to EPA investment, TCEQ
abatement device installation in compliance actually increases the likelihood of
future violator status. Also, as with the EPA investment variable, TCEQ abate-
ment device installation in violator status predicts a return to compliance.

Pollution and Damages Data

National Emissions Inventory data. We match 59% of observations in the
ECHO data for 2008 and 2011 to the NEI data. The imperfect match is consistent
with other studies that use the NEI data; e.g., Shapiro and Walker (2018) achieve
a 77.4% match rate between the NEI and the Census of Manufacturing. We
measure smokestack emissions for six pollutants: PM2.5, NOX, SO2, volatile
organic compounds, NH3, and Pb. For our counterfactuals, we need the expected
level of pollution by regulatory state. To obtain this, we aggregated the matched
NEI data to the region, industry, gravity state, and compliance / regular violator
/ HPV status level. We then calculated the mean pollution for each of these
states, imputing missing values. We did not use the full regulatory state here
given the limited number of matching observations in the NEI data for some
states.

AP3 data. The AP3 data come from an integrated assessment model that
explicitly considers the impact of pollution emitted in different locations, and
thereby takes into account differences in local populations and underlying pollu-
tion levels. While we consider the damages from criteria air pollutants—ozone
(O3), particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOX),
sulfur dioxide (SO2), and Pb—the AP3 data include damages from smokestack
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emissions that can lead to criteria air pollutants—PM2.5, NOX, SO2, volatile
organic compounds (a precursor to ozone), and NH3 (a precursor to PM).

National Ambient Air Quality Standards attainment data. We consider
NAAQS attainment status for each pollutant covered during this period. In
particular, we use information on non-attainment for 8-hour ozone (1997 and 2008
standards), carbon monoxide (1971 standard), lead (1978 and 2008 standards),
PM-10 (1987 standard), and PM-2.5 (1997 and 2006 standards) in each year
from the EPA’s “Green Book.” We do not include information on the 1979 1-
hour ozone standard because it was revoked on June 15, 2005; the 1971 nitrogen
dioxide standard because all areas were in attainment as of September 22, 1998;
or the 2010 sulfur dioxide standard because the original areas were not designated
until October 4, 2013, after the end of our sample period.

A3. Details on Empirical Framework

Plant Dynamic Optimization

A plant that is not in compliance makes an investment decision in each period,
knowing that the investment will reduce its expected future cost of regulatory
enforcement. The plant’s optimization therefore requires evaluating the value of
being in a given state, Ω, at the start of the next period.

Let V (Ω) denote the value function at the beginning of the period, Ṽ (Ω̃) denote
the value function at the point right after the regulator has moved but before the
plant receives its draws of ε, and Com(T ) be an indicator for T designating
compliance.44 We first exposit V (Ω), the value function at the beginning of the
period:

(A1) V (Ω) =
∑
i∈0,1

I(Ω)i(1− I(Ω))1−i
∫ [

U(Ω, e) + Ṽ (T (Ω, e))
]
dP (e|Ω, I, i),

where dP (e|Ω, I, i) is the integral over the density of the environmental com-
pliance signal e given the plant state, the inspection policy, and the inspection
decision. Note that the plant does not make any decision at the beginning of the
period, and hence there is no maximization in (A1). However, the plant must
integrate over the regulator policies and e.

We now exposit Ṽ (Ω̃):

Ṽ (Ω̃) = Com(Ω̃)×
∫

[βV (Ω̃, θ) + ε0]dF (ε0) + (1− Com(Ω̃))×∫ ∫
max{βV (Ω|Ω̃, X = 0) + ε0,−θX + βV (Ω|Ω̃, X = 1) + ε1}dF (ε0)dF (ε1)

= Com(Ω̃)[βV (Ω̃, θ) + γ] + (1− Com(Ω̃))×(A2)

[ln(exp(βV (Ω|Ω̃, X = 0)) + exp(−θX + βV (Ω|Ω̃, X = 1)) + γ],

44For ease of notation, we are conditioning on the plant’s parameter vector θ.
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where dF (·) is the integral over the density of the type 1 extreme value distribu-
tion. The first part of (A2) reflects the case of compliance. In this case, the plant
transitions to the same state Ω̃ in the next period. Since there is no plant choice
here, in expectation, the plant receives the continuation value plus the mean value
of the type 1 extreme value distribution which is γ, Euler’s constant. The second
part of (A2) reflects the case of a plant that is a violator or high priority violator.
In this case, it makes a choice of whether to invest or not. Since the value is
computed ex ante to the realization of the idiosyncratic draws, we can use the
familiar logit aggregation. The transition state, though still not stochastic, is
now potentially different from the current state, because it updates both lagged
investments and depreciated accumulated violations.

Finally, having defined the value functions, we can write the probability of
a plant choosing investment given a regulatory state Ω̃ and its cost and utility
parameters θ as:

(A3) Pr(X = 1|Ω̃, θ) =
(1− Com(Ω̃)) exp(−θX + βV (Ω|Ω̃, X = 1))

exp(−θX + βV (Ω|Ω̃, X = 1)) + exp(βV (Ω|Ω̃, X = 0))
.

Since the probability in (A3) is used in our estimators, we have written it as a
function of the structural parameter vector θ.

Computation of Bellman Equation

The plant’s decision as to whether or not to invest at any state is based on
dynamic optimization. As such, we solve for the Bellman equation for candidate
parameter values, based on equations (A1) and (A2). Specifically, for our quasi-
likelihood estimator, we perform a non-linear search for θ and hence we solve for
the Bellman equation for each of the candidate values of θ that are considered
in the course of the non-linear search. For our GMM estimator, we solve for the
Bellman equation for each of the 10,001 values in our fixed parameter grid.

The states in Ω and Ω̃ are discrete, except for depreciated accumulated viola-
tions. Our Bellman equation discretizes this latter variable, using 20 grid points
that are evenly spaced from 0 to 9.5. The transition from Ω̃ to Ω, given in (A2),
will result in a new level of depreciated accumulated violations that does not
necessarily correspond to a grid point. As such, we use linear interpolation to
calculate (A2).

The transition from Ω to Ω̃, given in (A1), is stochastic, as it depends on the
regulatory CCP. We perform this calculation by simulating from the estimated
regulator CCP. Specifically, we first calculate the inspection probability for each
state from the predicted values of our estimates. We then calculate the violation
probability for each state and inspection decision. Following this, we calculate
the distribution of fines for each state, inspection decision, and violation decision,
using 20 evenly spaced points from the estimated residual distribution—which
we denote F—ranging from R−1(0.025) to R−1(0.975). Finally, we calculate the
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transition probabilities between the three statuses of compliance, regular violator,
and HPV, for each state, inspection decision, violation decision, and discretized
fine decision.

Altogether, this gives 240 (2 × 2 × 20 × 3) possible regulatory outcomes using
our discretized method. We calculate the probability and mean fines for each
one. The Bellman equation then integrates over these possibilities. We compute
our Bellman equation until a fixed point, defined as a sup norm tolerance of
10−9 between subsequent iterations. Following Assumption 1, when we compute
Bellman equations under counterfactual policy environments, the state-contingent
inspection, violation, and transition probabilities remain the same as in the base
computations.

Empirical Implementation of Homogeneous Coefficients Model

In addition to our main random coefficient model, we estimate a model with
homogeneous coefficients θ using a quasi-likelihood nested fixed point estimator.
We calculate a quasi-likelihood (and not a likelihood) because we use the reg-
ulator’s estimated CCPs in the plant’s dynamic optimization process. In this
model, there are no serially correlated unobservables for a plant over time, and
hence, we can treat each plant i and quarter t as an independent observation.
The quasi-log-likelihood of a parameter vector θ is:
(A4)

logL(θ) =
∑
i

∑
t

log

([
XitPr(X = 1|Ω̃it, θ) + (1−Xit)(1− Pr(X = 1|Ω̃it, θ))

])
,

where the Pr(X = 1) values are obtained from investment probabilities at the
fixed point of the Bellman equation.

Our nested fixed point estimator is similar to Rust (1987). One difference is that
in Rust (1987), the state transitions conditional on actions are exogenous, while
here, they derive from the regulator’s CCPs, making our estimator consistent with
a dynamic game.45 We obtain inference for our parameters and counterfactuals
by bootstrapping our entire estimation process including the regulator’s CCPs,
with resampling at the plant level.

Choice of Fixed Grid Values for GMM Estimation

Our fixed grid estimator requires the ex ante specification of potential parameter
grid values. We follow Fox et al. (2016) and first estimate the quasi-likelihood
model and then center our fixed grid on these estimates. This requires specifying
a range for the parameter grid around the quasi-likelihood estimates. We used a
range of 15 (from 7.5 below the quasi-likelihood model to 7.5 above) for investment

45We could also estimate the plant’s utility function with a CCP estimator (Aguirregabiria and Mira,
2007), which is quicker to compute, but we did not, since the computational time for the nested fixed
point quasi-likelihood estimator is not excessive.
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and 5 for the other parameters. We chose these ranges after experimenting to
make sure that they were large enough that we did not have parameters with
positive weights near the boundary.

We choose our actual grid values by again following Fox et al. (2016) and using
co-prime Halton sequences for each parameter, using the first five prime numbers,
since each plant has five parameters. We scale the Halton sequences over the range
between the minimum and maximum values. Co-prime Halton sequences better
cover the set of parameters than would taking the interaction of the same grid
points for each component (Train, 2009).

We dropped the first 20 elements of each Halton sequence as recommended
in the literature (Train, 2009). We use the next 10,000 elements of the Halton
sequences plus the quasi-likelihood estimates themselves as our fixed grid; hence
J = 10, 001. We also experimented with J = 8, 001 (using the first 8,000 elements
of the Halton sequence) and found similar results.

Inputs to Moments

As noted in Section III.C, we have three sets of moments. In order to explain
our moments, order the states 1, . . . ,K and let ω1

k denote the fixed component
of state k and ω2

k denote the variable component of state k. Then, let πk(θ) be
the steady state share of plants at ω2

k given ω1
k. For a given ω1

k, we recover the
associated π(θ) values by solving the Bellman equation for ω1

k, generating the
transition matrix between variable states, and finding the vector that is invariant
when transformed by this matrix.

As in (3), each moment is constructed from some md
k and mk(θj). We now

denote these terms m1
k, m

2
k, and m3

k, and md1
k , md2

k , and md3
k , corresponding to

our three sets of moments. Our first set of moments indicates differences in the
steady state share of plants πk between the model and the data. Specifically, for
any moment Gk(η) = md1

k −
∑J

j=1 ηjm
1
k(θ), we let:

(A5) m1
k(θj) = πk(θj),

and

(A6) md1
k =

∑
i

∑
t 1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k}∑
i

∑
t 1{Ω̃1

it = ω1
k}

.

We note a few points about these moments. This first set of moments follows
closely from Nevo et al. (2016), although we use the steady state distribution of
our infinite-horizon dynamic problem, while they use the actual distribution of
their finite-horizon problem. While in principle we could construct a moment
from every Ω̃, this would be difficult in practice given that we have over 50,000
states. Hence, we create moments for the 5,000 states which have the highest
expected number of steady state observations at our estimated quasi-likelihood
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parameters and given our data on Ω̃1.

Our second set of moments also follows closely from Nevo et al. (2016). The mk

values for these moments are constructed from the conditional steady state share
of plants at any variable state times the conditional share having an investment
at that state:

(A7) m2
k(θj) = πk(θj)× Share[X = 1|Ω̃, θj ],

and

(A8) md2
k =

∑
i

∑
t 1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k, Xit = 1}∑
i

∑
t 1{Ω̃1

it = ω1
k}

.

We compute these moments for every state for which we compute our first set of
moments, except for states that reflect compliance, as there is no investment in
these states.

Our final set of moments explicitly captures the panel data aspect of investment.
The mk values for these moments are constructed from the conditional steady
state share of plants at any variable state times the conditional share having
an investment at that state times the sum from 1 to 6 of the product of the
number itself and the conditional share with that many investments in the next
six periods:

m3
k(θj) = πk(θj)× Share[X = 1|Ω̃, θj ]×(A9) (∑6

s=1 s× Share[s investments within 6 periods|X = 1, Ω̃, θj ]

)
,

and

(A10) md3
k =

∑
i

∑
t

[
1{Ω̃2

it = ω2
k, Ω̃

1
it = ω1

k, Xit = 1} ×
(∑6

s=1Xi,t+s

)]
∑

i

∑
t 1{Ω̃1

it = ω1
k}

.

These moments seek to match the extent of repeated investments by plants in the
data to the model. A more traditional correlation moment would simply multiply
investment at time t with investment at time t + 1 rather than with investment
over the following six periods. We chose this formulation because we worry that
investment in two subsequent quarters might partly reflect measurement error.
We compute these moments for every state for which we compute our second set
of moments.

To calculate the investment in the 6 periods ahead in (A9), we integrate over
all potential paths conditioning on the initial state and investment decision. Each
period there are ten potential paths: every interaction of (1) investment or not,
(2) violation or not, and (3) regular violator and HPV statuses; plus the cases
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of compliance with and without violations, but without investment.46 Over 6
periods, this then implies 106 = 1,000,000 possible paths for each parameter
vector in our fixed grid θj . Thus, calculation of mk for this set of moments is
time consuming.

Overall, our estimator for our base specification has 14,374 moments, composed
of 5,000 of the first set and 4,687 each of the second and third set. Our compu-
tation of mk(θj) results in a 14,374 × 10,001 matrix and takes approximately
eight days on an iMacPro with eight processors, with code written in C with
MPI, or two days on the University of Arizona high performance cluster, using
28 processors.

Weighting Matrix and Estimation of GMM Parameters ηj

We follow the standard approach in GMM estimation of weighting by an esti-
mate of the inverse of the variance-covariance matrix to improve the efficiency of
our estimates.47 We proceed in two stages. In stage 1, we estimate the model
with a weighting matrix that does not reflect an asymptotic approximation to the
variance-covariance matrix. Then, we use our stage 1 estimates to compute an
approximation to the variance-covariance matrix.48 In stage 2, we reestimate our
parameters using this weighting matrix. We now detail our computation of the
variance-covariance matrix for both stages.

In stage 1, we calculate the variance-covariance matrix of the moments inputs
mk, at the quasi-likelihood estimates θQ.49

We calculate the diagonal elements of this matrix as:

V ar(mk(θQ)) =
E[mk(θQ)mk(θQ)]− E[mk(θQ)]2

Nk
,(A11)

where Nk is the number of plant / quarter observations from the region, industry,
and gravity state for moment k. This is the general formula for the variance for
the mean of Nk repeated i.i.d. draws from a random variable.

For the off-diagonal elements, the covariance will be zero for moments with
different values of Ω̃1. We can write the covariance between moments k and l
from the same Ω̃1 as:

Cov(mk(θQ),ml(θQ)) =
E[mk(θQ)ml(θQ)]− E[mk(θQ)]E[ml(θQ)]

Nk
.(A12)

46To save computational time, we use the higher probability point for depreciated accumulated viola-
tions, rather than linear interpolation.

47Our GMM estimator is non-standard in that it includes the constraints in (2), which limits our
ability to prove asymptotic efficiency of this estimator.

48We base our approximation on the stage 1 parameters with weights of 0.01 or greater.
49For some robustness specifications, we had collinearity issues with inverting this variance-covariance

matrix. We dropped moments with zero variance in one specification and used the diagonal of the matrix
for another specification.
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The first term in (A12) will be non-zero only for the three moments that pertain
to the same state. In this case, the first term in the numerator of the covariance
between the first and second set of moments will equal the second moment, while
the first term in the numerator between the first and third set of moments or
between the second and third set of moments will equal the third moment. The
reason for this is that the moment from the second set will only be non-zero when
the moment from the first set is non-zero, while the moment from the third set
will only be non-zero when the moment from the second set is non-zero. The
second term in (A12) is simply the product of the means.

In stage 1, we invert and take a Cholesky decomposition of this estimated
variance-covariance matrix. We then pre-multiply mk(θj) for each θj and md

k by
this matrix and obtain stage 1 estimates of the weights ηj by minimizing the linear
system of equations in (3) subject to the constraints in (2), via constrained least
squares. We use the Matlab package lsqlin to perform this minimization process,
which takes approximately 10 minutes on an iMacPro. The process generates
consistent estimates of η that we use to construct a weighting matrix.

We then estimate the variance-covariance matrix of G(η) using our stage 1
GMM estimates of η. From (3), the variance of G(η) is simply the squared
weighted sum of the variance conditional on the individual parameters, since the
probability of each individual parameter occurring is independent across obser-
vations.

We again take a Cholesky decomposition of the inverse of this revised variance-
covariance matrix, pre-multiply the matrix of moments mk(θj) across all θj values,
and re-run our estimation of the ηj weights. This provides our stage 2 estimates
of ηj , which are the ones that we report.

Bootstrap Procedure for Inference

We bootstrap to obtain standard errors for both our quasi-likelihood and GMM
estimates. For our GMM estimates, we provide standard errors on the counter-
factual estimates only rather than also on the structural parameters.

Our bootstrap for the GMM estimator proceeds with the following repeated
procedure:

1) We first draw an alternative dataset by sampling with replacement at the
plant level. The new dataset has the same number of plants as the original
data, though not necessarily the same number of plant / quarter observa-
tions.

2) We then use this new dataset to recalculate the regulatory CCPs.

3) Using these functions, we calculate the inputs to the moments, mk(θj) and
md
k. We limit the moments to those based on the 5,000 states which have

the highest expected number of steady state observations at our estimated
quasi-likelihood parameter. Note that the exact number of moments, mk,
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varies across iterations of the bootstrapping procedure, depending on how
many of those 5,000 states are in compliance.

4) We then calculate our initial weighting matrix and estimate our first-stage
GMM structural parameters η using this weighting matrix.

5) We then calculate the second stage weighting matrix for the moments based
on these first-stage estimates, and use this weighting matrix to re-estimate
the structural parameters.

6) Finally, we use these estimates to calculate all of the outcomes for each
counterfactual. We report the standard deviation of the outcomes across the
bootstrap iterations as the standard error of our counterfactual outcomes.

We report results from 100 bootstrap draws, using the University of Arizona
high performance cluster to perform the computations simultaneously. Our boot-
strap for the quasi-likelihood process is similar: it uses the output created in steps
1 and 2 above. It then estimates the structural parameters with a non-linear
search and performs the counterfactual computation with the new structural pa-
rameters, regulator CCPs, and dataset (analogous to step 6).

A4. Extra Figures and Tables

Table A1—: Investment and Resolution of Violations

Dependent variable: return to compliance
Current investment −0.115 (0.002)
One quarter lag of investment 0.380 (0.006)
Two quarters lag of investment 0.083 (0.007)
Three quarters lag of investment −0.012 (0.005)
Four quarters lag of investment −0.051 (0.005)
Number of observations 103,338
Note: regression includes region, industry, and gravity state dummies. Regression uses
the estimation sample restricted to plants not in compliance at the start of the period.
Standard errors, which are clustered at the plant level, are in parentheses.
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Table A2—: State Transitions After Investment in Compliance

Outcome: transition to regular violator status
One quarter lag of investment 1.29 (.09)
Two quarters lag of investment 1.21 (.17)

Outcome: transition to HPV status
One quarter lag of investment 0.48 (.12)
Two quarters lag of investment 1.11 (.17)
Note: table shows estimates from a multinomial logit regression. Regres-
sion includes region, industry, and gravity state dummies. Regression
uses the estimation sample restricted to plants in compliance at the start
of the period. Standard errors, which are clustered at the plant level, are
in parentheses.

Figure A1. : Mean Inspection Probabilities and Fines by EPA Region
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Note: authors’ calculations based on estimation sample. States in each EPA region are indicated next
to value.
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Figure A2. : Mean Inspection Probabilities and Fines by Industrial Sector
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Note: authors’ calculations based on estimation sample. Industrial sector measured by 2-digit NAICS
code.

Table A3—: Regressions of Regulatory Actions on Depreciated Accumulated Vi-
olations

Dependent variable: Inspection Fine amount Violation
Accumulated violations with no depreciation 0.004 −0.014 −0.000

(0.007) (0.004) (0.001)
Accumulated violations with 10% depreciation 0.132 0.128 0.008

(0.025) (0.016) (0.006)
Accumulated violations with 20% depreciation −0.031 −0.059 −0.006

(0.022) (0.013) (0.004)
HPV status at start of period 0.115 0.032 0.006

(0.006) (0.002) (0.001)
Number of observations 103,338 103,338 103,338
Note: regressions include region, industry, and gravity state dummies. Regression uses the
estimation sample restricted to plants not in compliance at the start of the period. Standard
errors, which are clustered at the plant level, are in parentheses.
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Figure A3. : Depreciated Accumulated Violations and Monitoring and Enforce-
ment
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Note: authors’ calculations based on estimation sample.

Table A4—: Percent of Observations With Gravity State by Regulatory State

Gravity Actual Potential NAAQS In Regular HPV
damage damage attainment compliance violator

1 Low Low Either 37.19 36.29 38.98
2 Low High Either 2.89 2.44 2.08
3 High Low Either 4.07 4.16 3.64
4 High High Yes 28.22 29.34 26.58
5 High High No 27.63 27.77 28.72

Total: 100 100 100
Note: authors’ calculations based on the estimation sample. Regulatory actions and
outcomes are based on start of period regulatory status.
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Table A5—: Regulatory CCPs Marginal Effects: Inspections

In Regular HPV
compliance violator

Plant time-varying state
Lag investment (0 to 1) — 0.050 0.012
2nd lag investment (0 to 1) — 0.100 0.043
Deprec. accum. vio. (mean to mean + 1) — 0.126 0.110

Plant fixed state
Non-attainment (given highest gravity) −0.028 −0.022 0.006
Highest gravity and attainment (versus lowest) −0.000 −0.022 −0.022
SE EPA region (versus SW) −0.101 −0.026 0.040
Utility sector (versus manuf. food) 0.107 0.193 0.134
Mean 0.086 0.272 0.428
Pseudo R2 0.085 0.091 0.075
Note: table shows marginal effects from probit regressions. Regressions include region, in-
dustry, and gravity state dummies. We run each regression separately by start of period
regulatory status (compliance, a regular violator, or HPV). Each entry reports a marginal
effect as described in the table.

Table A6—: Regulatory CCPs Marginal Effects: Violations

In Regular HPV
compliance violator

Regulator actions
Inspection (0 to 1) 0.021 0.063 0.085

Plant time-varying state
Lag investment (0 to 1) — −0.007 −0.026
2nd lag investment (0 to 1) — −0.001 0.029
Deprec. accum. vio. (mean to mean + 1) — 0.026 0.041

Plant fixed state
Non-attainment (given highest gravity) 0.001 0.001 0.010
Highest gravity and attainment (versus lowest) −0.000 0.006 −0.010
SE EPA region (versus SW) −0.002 −0.010 −0.026
Utility sector (versus manuf. food) −0.001 −0.003 −0.013
Mean 0.000 0.102 0.156
Pseudo R2 0.182 0.152 0.099
Note: table shows marginal effects from probit regressions. Regressions include region, in-
dustry, and gravity state dummies. Most regressions also include inspection × gravity state
interactions. We run each regression separately by start of period regulatory status (compli-
ance, a regular violator, or HPV). Each entry reports a marginal effect as described in the
table.
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Table A7—: Regulatory CCPs Marginal Effects: Fines

In Regular HPV
compliance violator

Regulator actions
Violation (0 to 1) 0.000 0.020 0.279
Inspection (0 to 1) 0.000 0.024 0.176

Plant time-varying state
Lag investment (0 to 1) — 0.002 −0.592
2nd lag investment (0 to 1) — 0.002 0.139
Deprec. accum. vio. (mean to mean + 1) — 0.000 0.000

Plant fixed state
Non-attainment (given highest gravity) 0.000 0.005 0.196
Highest gravity and attainment (versus lowest) 0.000 −0.001 −0.117
SE EPA region (versus SW) 0.000 −0.150 0.125
Utility sector (versus manuf. food) 0.000 −0.005 0.025
Mean 0.035 0.637 8.268
Pseudo R2 0.187 0.245 0.108
Note: table shows marginal effects from tobit regressions. Regressions include region, industry,
and gravity state dummies. Most regressions also include inspection × gravity state interac-
tions. We run each regression separately by start of period regulatory status (compliance, a
regular violator, or HPV). Each entry reports a marginal effect as described in the table.

Table A8—: Regulatory CCPs Marginal Effects: Status Transitions

Beginning State: Compliance Regular violator High priority violator

Transition to: Into Into Into Into Into Into
regular HPV compliance HPV compliance regular
violator violator

Regulator actions
Fines (mean to mean + std. dev.) 0.000 0.000 −0.048 0.001 −0.018 −0.001
Violation (0 to 1) 0.676 0.166 −0.123 0.132 −0.118 −0.017
Inspection (0 to 1) 0.006 0.004 −0.007 0.013 −0.013 −0.002

Plant time-varying state
Lag investment (0 to 1) — — 0.313 −0.004 0.461 0.248
2nd lag investment (0 to 1) — — 0.136 0.007 −0.046 −0.008
Deprec. accum. vio. (mean to mean + 1) — — 0.032 0.004 −0.030 0.013

Plant fixed state
Non-attainment (given highest gravity) 0.000 0.000 0.004 0.002 0.007 −0.005
Highest gravity and attainment (versus
lowest)

−0.000 −0.000 −0.012 −0.000 0.000 −0.001

SE EPA region (versus SW) 0.002 −0.004 0.186 −0.152 −0.044 0.044
Utility sector (versus manuf. food) −0.000 0.000 −0.011 0.011 −0.004 −0.006
Pseudo R2 0.502 0.175 0.307
Note: table shows marginal effects from multinomial logit regressions. Regressions include region, industry, and
gravity state dummies. Most regressions also include inspection × gravity state interactions. We run each regression
separately by start of period regulatory status (compliance, a regular violator, or HPV). Each entry reports a
marginal effect as described in the table.
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Figure A4. : Model Fit: Further Investments in the Six Periods After Initial
Investment
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Note: authors’ calculations based on estimation sample and estimated models evaluated at steady state.

Table A9—: Estimates of Plants’ Structural Parameters: More Interactions in
CCPs

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.856 −2.856 −2.318 −2.482 −1.906 −1.778 4.404
(0.023)

Inspection utility (θI) −0.083 −0.083 −0.228 −0.130 0.106 −2.553 −2.323
(0.028)

Violation utility (θV ) 0.039 0.039 0.260 0.767 −0.362 −1.356 −0.870
(0.074)

Fine utility (millions $, θF ) −5.328 −5.328 −4.529 −6.114 −5.993 −7.055 −7.238
(0.225)

HPV status utility (θH) −0.081 −0.081 −0.045 −0.094 −0.168 −2.564 0.377
(0.007)

Weight on parameter vector 1 0.273 0.265 0.213 0.175 0.049 0.008
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are in
parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report
the 6 parameter vectors with the highest weight. The CCPs used in these estimates include region-by-industry
fixed effects instead of region and industry fixed effects.
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Table A10—: Estimates of Plants’ Structural Parameters for Mining and Extrac-
tion Only

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −2.316 −1.175 −2.219 −2.189 −0.964 −5.324 −8.918
(0.074)

Inspection utility (θI) −0.129 −1.111 −0.993 −0.938 −0.201 2.320 −0.496
(0.121)

Violation utility (θV ) −0.218 −1.490 −2.481 −2.225 −1.449 −1.609 −2.616
(0.657)

Fine utility (millions $, θF ) −5.891 −3.505 −6.039 −4.307 −3.728 −7.091 −8.272
(1.155)

HPV status utility (θH) −0.058 −0.205 −0.074 −0.333 −0.341 −0.821 0.215
(0.018)

Weight on parameter vector 1 0.603 0.209 0.131 0.022 0.012 0.010
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are in
parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report
the 6 parameter vectors with the highest weight. Estimation uses only data from mining and extraction (2-digit
NAICS code 21). Within this, the estimation uses the 6-digit NAICS codes with the most plant / quarters,
211111, 211112, 212312, and 212321, and EPA regions 3-8. Estimation replaces 2-digit NAICS code fixed effects
in the CCPs with 6-digit NAICS code fixed effects.

Table A11—: Estimates of Plants’ Structural Parameters for 10 Most Populous
States

Quasi-
likelihood GMM random coefficient estimates
estimates (1) (2) (3) (4) (5) (6)

Negative of investment cost (−θX) −3.354 −2.843 −3.856 −6.458 −3.689 −0.813 −3.838
(0.036)

Inspection utility (θI) −0.038 0.572 −1.195 −0.070 −0.286 −1.539 0.311
(0.042)

Violation utility (θV ) 0.827 0.041 1.209 −0.359 0.467 3.314 −0.447
(0.076)

Fine utility (millions $, θF ) −7.139 −8.967 −9.615 −8.258 −5.384 −4.934 −5.670
(0.271)

HPV status utility (θH) −0.184 −0.181 −0.129 −0.155 −0.020 −2.466 −0.257
(0.009)

Weight on parameter vector 1 0.417 0.222 0.144 0.053 0.051 0.048
Note: standard errors for quasi-likelihood estimates, which we calculate via an outer product formula, are in
parentheses. GMM estimates are for a one-step estimator, unlike main results. For GMM estimates, we report
the 6 parameter vectors with the highest weight. Estimation uses only data from CA, TX, NY, FL, IL, PA, OH,
MI, GA, and NC and replaces region fixed effects in the CCPs with state fixed effects.
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Table A12—: Counterfactual Results With the Quasi-Likelihood Estimates:
Changing the Escalation Rate of Fines

(1) (2) (3) (4) (5)
Same fines for Same fines for all Fines for HPVs

Data Baseline all violators; violators; pollution doubled relative
fines constant damages constant to baseline

Quasi-likelihood estimates
Compliance (%) 95.62 94.66 (0.12) 91.45 (2.84) 94.81 (0.15) 95.06 (0.12)
Regular violator (%) 2.88 3.91 (0.11) 3.78 (0.13) 3.49 (0.11) 3.91 (0.11)
HPV (%) 1.50 1.43 (0.04) 4.77 (2.91) 1.70 (0.14) 1.03 (0.03)
Investment rate (%) 0.40 0.44 (0.01) 0.43 (0.02) 0.51 (0.02) 0.45 (0.01)
Inspection rate (%) 9.65 9.43 (0.06) 10.60 (1.36) 9.52 (0.09) 9.31 (0.05)
Fines (thousands $) 0.18 0.32 (0.04) 0.32 (0.04) 1.51 (0.29) 0.38 (0.05)
Violations (%) 0.55 0.54 (0.01) 1.08 (0.85) 0.60 (0.06) 0.50 (0.01)
Plant utility — −0.007 (0.004) −0.003 (0.006) −0.013 (0.004) −0.008 (0.004)
Pollution damages (mil. $) 1.65 1.54 (0.02) 1.87 (0.26) 1.54 (0.02) 1.50 (0.02)
Note: each statistic is the long-run equilibrium mean, weighting by the number of plants by region, industry, and
gravity state in our data. Plant utility reports the average flow utility across types and states including ε except
for Euler’s constant. Column (1) presents the value of each statistic in our data. Column (2) presents the results
of our model given the estimated coefficients and the existing regulatory actions and outcomes. Other columns
change the state-contingent fines and HPV cost faced by plants. Columns (3) and (4) impose the same fines for all
regular and high-priority violators for a given fixed state. Column (5) doubles the fines for plants in HPV status.
All values are per plant / quarter. Bootstrapped standard errors are in parentheses.


